GSR-BENCH: A Benchmark for Grounded Spatial Reasoning Evaluation via Multimodal LLMs
- URL: http://arxiv.org/abs/2406.13246v2
- Date: Thu, 10 Oct 2024 22:22:52 GMT
- Title: GSR-BENCH: A Benchmark for Grounded Spatial Reasoning Evaluation via Multimodal LLMs
- Authors: Navid Rajabi, Jana Kosecka,
- Abstract summary: The ability to understand and reason about spatial relationships between objects in images is an important component of visual reasoning.
We extend the previously released What'sUp dataset and propose a novel comprehensive evaluation for spatial relationship understanding.
- Score: 3.2688425993442696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to understand and reason about spatial relationships between objects in images is an important component of visual reasoning. This skill rests on the ability to recognize and localize objects of interest and determine their spatial relation. Early vision and language models (VLMs) have been shown to struggle to recognize spatial relations. We extend the previously released What'sUp dataset and propose a novel comprehensive evaluation for spatial relationship understanding that highlights the strengths and weaknesses of 27 different models. In addition to the VLMs evaluated in What'sUp, our extensive evaluation encompasses 3 classes of Multimodal LLMs (MLLMs) that vary in their parameter sizes (ranging from 7B to 110B), training/instruction-tuning methods, and visual resolution to benchmark their performances and scrutinize the scaling laws in this task.
Related papers
- Vision language models are unreliable at trivial spatial cognition [0.2902243522110345]
Vision language models (VLMs) are designed to extract relevant visuospatial information from images.
We develop a benchmark dataset -- TableTest -- whose images depict 3D scenes of objects arranged on a table, and used it to evaluate state-of-the-art VLMs.
Results show that performance could be degraded by minor variations of prompts that use equivalent descriptions.
arXiv Detail & Related papers (2025-04-22T17:38:01Z) - MATHGLANCE: Multimodal Large Language Models Do Not Know Where to Look in Mathematical Diagrams [65.02628814094639]
Diagrams serve as a fundamental form of visual language, representing complex concepts and their inter-relationships through structured symbols, shapes, and spatial arrangements.
Current benchmarks conflate perceptual and reasoning tasks, making it difficult to assess whether Multimodal Large Language Models genuinely understand mathematical diagrams beyond superficial pattern recognition.
We introduce MATHGLANCE, a benchmark specifically designed to isolate and evaluate mathematical perception in MLLMs.
We construct GeoPeP, a perception-oriented dataset of 200K structured geometry image-text annotated with geometric primitives and precise spatial relationships.
arXiv Detail & Related papers (2025-03-26T17:30:41Z) - Mind the Gap: Benchmarking Spatial Reasoning in Vision-Language Models [14.442394137843923]
We present a detailed analysis that first delineates the core elements of spatial reasoning.
We then assesses the performance of these models in both synthetic and real-world images.
arXiv Detail & Related papers (2025-03-25T14:34:06Z) - Why Is Spatial Reasoning Hard for VLMs? An Attention Mechanism Perspective on Focus Areas [52.478956204238315]
We study the spatial reasoning challenge from the lens of mechanistic interpretability.
We observe that successful spatial reasoning correlates strongly with the model's ability to align its attention with actual object locations.
Motivated by these findings, we propose ADAPTVIS to sharpen the attention on highly relevant regions when confident.
arXiv Detail & Related papers (2025-03-03T17:57:03Z) - Enhanced Multimodal RAG-LLM for Accurate Visual Question Answering [10.505845766495128]
Multimodal large language models (MLLMs) have made significant progress in integrating visual and textual modalities.
We propose a novel framework based on multimodal retrieval-augmented generation (RAG)
RAG introduces structured scene graphs to enhance object recognition, relationship identification, and spatial understanding within images.
arXiv Detail & Related papers (2024-12-30T13:16:08Z) - Teaching VLMs to Localize Specific Objects from In-context Examples [56.797110842152]
We find that present-day Vision-Language Models (VLMs) lack a fundamental cognitive ability: learning to localize specific objects in a scene by taking into account the context.
This work is the first to explore and benchmark personalized few-shot localization for VLMs.
arXiv Detail & Related papers (2024-11-20T13:34:22Z) - Reasoning Paths with Reference Objects Elicit Quantitative Spatial Reasoning in Large Vision-Language Models [61.899791071654654]
We introduce a benchmark, Q-Spatial Bench, with 271 questions across five categories designed for quantitative spatial reasoning.
We investigate the performance of state-of-the-art vision-language models (VLMs) on this task.
We develop a zero-shot prompting technique, SpatialPrompt, that encourages VLMs to answer quantitative spatial questions using reference objects as visual cues.
arXiv Detail & Related papers (2024-09-15T16:45:42Z) - VSP: Assessing the dual challenges of perception and reasoning in spatial planning tasks for VLMs [102.36953558562436]
Vision language models (VLMs) are an exciting emerging class of language models (LMs)
One understudied capability inVLMs is visual spatial planning.
Our study introduces a benchmark that evaluates the spatial planning capability in these models in general.
arXiv Detail & Related papers (2024-07-02T00:24:01Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [56.391404083287235]
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach.
Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations.
We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes.
arXiv Detail & Related papers (2024-06-24T17:59:42Z) - ReMI: A Dataset for Reasoning with Multiple Images [41.954830849939526]
We introduce ReMI, a dataset designed to assess large language models' ability to Reason with Multiple Images.
This dataset encompasses a diverse range of tasks, spanning various reasoning domains such as math, physics, logic, code, table/chart understanding, and spatial and temporal reasoning.
We have benchmarked several cutting-edge LLMs and found a substantial gap between their performance and human-level proficiency.
arXiv Detail & Related papers (2024-06-13T14:37:04Z) - Q-GroundCAM: Quantifying Grounding in Vision Language Models via GradCAM [3.2688425993442696]
Many probing studies have revealed that even the best-performing Vision and Language Models (VLMs) struggle to capture aspects of compositional scene understanding.
Recent VLM advancements include scaling up both model and dataset sizes, additional training objectives and levels of supervision.
This paper introduces a novel suite of quantitative metrics that utilize GradCAM activations to rigorously evaluate the grounding capabilities of pre-trained VLMs.
arXiv Detail & Related papers (2024-04-29T22:06:17Z) - RelationVLM: Making Large Vision-Language Models Understand Visual Relations [66.70252936043688]
We present RelationVLM, a large vision-language model capable of comprehending various levels and types of relations whether across multiple images or within a video.
Specifically, we devise a multi-stage relation-aware training scheme and a series of corresponding data configuration strategies to bestow RelationVLM with the capabilities of understanding semantic relations.
arXiv Detail & Related papers (2024-03-19T15:01:19Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning.
Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored.
arXiv Detail & Related papers (2024-02-12T18:21:14Z) - Enhancing the Spatial Awareness Capability of Multi-Modal Large Language
Model [25.86351431223383]
The Multi-Modal Large Language Model (MLLM) is an extension of the Large Language Model (LLM) equipped with the capability to receive and infer multi-modal data.
This paper proposes using more precise spatial position information between objects to guide MLLM in providing more accurate responses to user-related inquiries.
arXiv Detail & Related papers (2023-10-31T10:57:35Z) - Evaluating Spatial Understanding of Large Language Models [26.436450329727645]
Large language models show remarkable capabilities across a variety of tasks.
Recent studies suggest that LLM representations implicitly capture aspects of the underlying grounded concepts.
We design natural-language navigation tasks and evaluate the ability of LLMs to represent and reason about spatial structures.
arXiv Detail & Related papers (2023-10-23T03:44:40Z) - Towards Grounded Visual Spatial Reasoning in Multi-Modal Vision Language
Models [3.86170450233149]
We show that large vision-and-language models (VLMs) trained to match images with text lack fine-grained understanding of spatial relations.
We propose an alternative fine-grained, compositional approach for recognizing and ranking spatial clauses.
arXiv Detail & Related papers (2023-08-18T18:58:54Z) - Benchmarking Unsupervised Object Representations for Video Sequences [111.81492107649889]
We compare the perceptual abilities of four object-centric approaches: ViMON, OP3, TBA and SCALOR.
Our results suggest that the architectures with unconstrained latent representations learn more powerful representations in terms of object detection, segmentation and tracking.
Our benchmark may provide fruitful guidance towards learning more robust object-centric video representations.
arXiv Detail & Related papers (2020-06-12T09:37:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.