Let Androids Dream of Electric Sheep: A Human-like Image Implication Understanding and Reasoning Framework
- URL: http://arxiv.org/abs/2505.17019v1
- Date: Thu, 22 May 2025 17:59:53 GMT
- Title: Let Androids Dream of Electric Sheep: A Human-like Image Implication Understanding and Reasoning Framework
- Authors: Chenhao Zhang, Yazhe Niu,
- Abstract summary: Let Androids Dream (LAD) is a novel framework for image implication understanding and reasoning.<n>Our framework with the lightweight GPT-4o-mini model achieves SOTA performance compared to 15+ MLLMs on English image implication benchmark.<n>Our work provides new insights into how AI can more effectively interpret image implications.
- Score: 1.5998912722142729
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Metaphorical comprehension in images remains a critical challenge for AI systems, as existing models struggle to grasp the nuanced cultural, emotional, and contextual implications embedded in visual content. While multimodal large language models (MLLMs) excel in basic Visual Question Answer (VQA) tasks, they struggle with a fundamental limitation on image implication tasks: contextual gaps that obscure the relationships between different visual elements and their abstract meanings. Inspired by the human cognitive process, we propose Let Androids Dream (LAD), a novel framework for image implication understanding and reasoning. LAD addresses contextual missing through the three-stage framework: (1) Perception: converting visual information into rich and multi-level textual representations, (2) Search: iteratively searching and integrating cross-domain knowledge to resolve ambiguity, and (3) Reasoning: generating context-alignment image implication via explicit reasoning. Our framework with the lightweight GPT-4o-mini model achieves SOTA performance compared to 15+ MLLMs on English image implication benchmark and a huge improvement on Chinese benchmark, performing comparable with the GPT-4o model on Multiple-Choice Question (MCQ) and outperforms 36.7% on Open-Style Question (OSQ). Additionally, our work provides new insights into how AI can more effectively interpret image implications, advancing the field of vision-language reasoning and human-AI interaction. Our project is publicly available at https://github.com/MING-ZCH/Let-Androids-Dream-of-Electric-Sheep.
Related papers
- Context-Aware Semantic Segmentation: Enhancing Pixel-Level Understanding with Large Language Models for Advanced Vision Applications [0.0]
We propose a novel Context-Aware Semantic framework that integrates Large Language Models (LLMs) with state-of-the-art vision backbones.<n>A Cross-Attention Mechanism is introduced to align vision and language features, enabling the model to reason about context more effectively.<n>This work bridges the gap between vision and language, paving the path for more intelligent and context-aware vision systems in applications including autonomous driving, medical imaging, and robotics.
arXiv Detail & Related papers (2025-03-25T02:12:35Z) - Can visual language models resolve textual ambiguity with visual cues? Let visual puns tell you! [14.84123301554462]
We present UNPIE, a novel benchmark designed to assess the impact of multimodal inputs in resolving lexical ambiguities.
Our dataset includes 1,000 puns, each accompanied by an image that explains both meanings.
The results indicate that various Socratic Models and Visual-Language Models improve over the text-only models when given visual context.
arXiv Detail & Related papers (2024-10-01T19:32:57Z) - StrucTexTv3: An Efficient Vision-Language Model for Text-rich Image Perception, Comprehension, and Beyond [68.0107158115377]
We have crafted an efficient vision-language model, StrucTexTv3, tailored to tackle various intelligent tasks for text-rich images.
We enhance the perception and comprehension abilities of StrucTexTv3 through instruction learning.
Our method achieved SOTA results in text-rich image perception tasks, and significantly improved performance in comprehension tasks.
arXiv Detail & Related papers (2024-05-31T16:55:04Z) - VLLMs Provide Better Context for Emotion Understanding Through Common Sense Reasoning [66.23296689828152]
We leverage the capabilities of Vision-and-Large-Language Models to enhance in-context emotion classification.
In the first stage, we propose prompting VLLMs to generate descriptions in natural language of the subject's apparent emotion.
In the second stage, the descriptions are used as contextual information and, along with the image input, are used to train a transformer-based architecture.
arXiv Detail & Related papers (2024-04-10T15:09:15Z) - ConTextual: Evaluating Context-Sensitive Text-Rich Visual Reasoning in Large Multimodal Models [92.60282074937305]
We introduce ConTextual, a novel dataset featuring human-crafted instructions that require context-sensitive reasoning for text-rich images.
We conduct experiments to assess the performance of 14 foundation models and establish a human performance baseline.
We observe a significant performance gap of 30.8% between GPT-4V and human performance.
arXiv Detail & Related papers (2024-01-24T09:07:11Z) - Visually-Situated Natural Language Understanding with Contrastive
Reading Model and Frozen Large Language Models [24.456117679941816]
Contrastive Reading Model (Cream) is a novel neural architecture designed to enhance the language-image understanding capability of Large Language Models (LLMs)
Our approach bridges the gap between vision and language understanding, paving the way for the development of more sophisticated Document Intelligence Assistants.
arXiv Detail & Related papers (2023-05-24T11:59:13Z) - Vision-Language Models in Remote Sensing: Current Progress and Future Trends [25.017685538386548]
Vision-language models enable reasoning about images and their associated textual descriptions, allowing for a deeper understanding of the underlying semantics.
Vision-language models can go beyond visual recognition of RS images, model semantic relationships, and generate natural language descriptions of the image.
This paper provides a comprehensive review of the research on vision-language models in remote sensing.
arXiv Detail & Related papers (2023-05-09T19:17:07Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
We show that recent advances in each modality, CLIP image representations and scaling of language models, do not consistently improve multimodal self-rationalization of tasks with multimodal inputs.
Our findings call for a backbone modelling approach that can be built on to advance text generation from images and text beyond image captioning.
arXiv Detail & Related papers (2022-05-24T00:52:40Z) - Visually-Augmented Language Modeling [137.36789885105642]
We propose a novel pre-training framework, named VaLM, to Visually-augment text tokens with retrieved relevant images for Language Modeling.
With the visually-augmented context, VaLM uses a visual knowledge fusion layer to enable multimodal grounded language modeling.
We evaluate the proposed model on various multimodal commonsense reasoning tasks, which require visual information to excel.
arXiv Detail & Related papers (2022-05-20T13:41:12Z) - A Picture May Be Worth a Hundred Words for Visual Question Answering [26.83504716672634]
In image understanding, it is essential to use concise but detailed image representations.
Deep visual features extracted by vision models, such as Faster R-CNN, are prevailing used in multiple tasks.
We propose to take description-question pairs as input, instead of deep visual features, and fed them into a language-only Transformer model.
arXiv Detail & Related papers (2021-06-25T06:13:14Z) - Unifying Vision-and-Language Tasks via Text Generation [81.3910771082967]
We propose a unified framework that learns different tasks in a single architecture.
Our models learn to generate labels in text based on the visual and textual inputs.
Our generative approach shows better generalization ability on answering questions that have rare answers.
arXiv Detail & Related papers (2021-02-04T17:59:30Z) - Multi-Modal Graph Neural Network for Joint Reasoning on Vision and Scene
Text [93.08109196909763]
We propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN)
It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively.
It then introduces three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities.
arXiv Detail & Related papers (2020-03-31T05:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.