DO-RAG: A Domain-Specific QA Framework Using Knowledge Graph-Enhanced Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2505.17058v1
- Date: Sat, 17 May 2025 06:40:17 GMT
- Title: DO-RAG: A Domain-Specific QA Framework Using Knowledge Graph-Enhanced Retrieval-Augmented Generation
- Authors: David Osei Opoku, Ming Sheng, Yong Zhang,
- Abstract summary: Domain-specific QA systems require generative fluency but high factual accuracy grounded in structured expert knowledge.<n>We propose DO-RAG, a scalable and customizable hybrid QA framework that integrates multi-level knowledge graph construction with semantic vector retrieval.
- Score: 4.113142669523488
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Domain-specific QA systems require not just generative fluency but high factual accuracy grounded in structured expert knowledge. While recent Retrieval-Augmented Generation (RAG) frameworks improve context recall, they struggle with integrating heterogeneous data and maintaining reasoning consistency. To address these challenges, we propose DO-RAG, a scalable and customizable hybrid QA framework that integrates multi-level knowledge graph construction with semantic vector retrieval. Our system employs a novel agentic chain-of-thought architecture to extract structured relationships from unstructured, multimodal documents, constructing dynamic knowledge graphs that enhance retrieval precision. At query time, DO-RAG fuses graph and vector retrieval results to generate context-aware responses, followed by hallucination mitigation via grounded refinement. Experimental evaluations in the database and electrical domains show near-perfect recall and over 94% answer relevancy, with DO-RAG outperforming baseline frameworks by up to 33.38%. By combining traceability, adaptability, and performance efficiency, DO-RAG offers a reliable foundation for multi-domain, high-precision QA at scale.
Related papers
- Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - Respecting Temporal-Causal Consistency: Entity-Event Knowledge Graphs for Retrieval-Augmented Generation [69.45495166424642]
We develop a robust and discriminative QA benchmark to measure temporal, causal, and character consistency understanding in narrative documents.<n>We then introduce Entity-Event RAG (E2RAG), a dual-graph framework that keeps separate entity and event subgraphs linked by a bipartite mapping.<n>Across ChronoQA, our approach outperforms state-of-the-art unstructured and KG-based RAG baselines, with notable gains on causal and character consistency queries.
arXiv Detail & Related papers (2025-06-06T10:07:21Z) - Retrieval-Augmented Generation: A Comprehensive Survey of Architectures, Enhancements, and Robustness Frontiers [0.0]
Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm to enhance large language models.<n>RAG introduces new challenges in retrieval quality, grounding fidelity, pipeline efficiency, and robustness against noisy or adversarial inputs.<n>This survey aims to consolidate current knowledge in RAG research and serve as a foundation for the next generation of retrieval-augmented language modeling systems.
arXiv Detail & Related papers (2025-05-28T22:57:04Z) - HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation [11.53083922927901]
HM-RAG is a novel Hierarchical Multi-agent Multimodal RAG framework.<n>It pioneers collaborative intelligence for dynamic knowledge synthesis across structured, unstructured, and graph-based data.
arXiv Detail & Related papers (2025-04-13T06:55:33Z) - MES-RAG: Bringing Multi-modal, Entity-Storage, and Secure Enhancements to RAG [65.0423152595537]
We propose MES-RAG, which enhances entity-specific query handling and provides accurate, secure, and consistent responses.<n>MES-RAG introduces proactive security measures that ensure system integrity by applying protections prior to data access.<n> Experimental results demonstrate that MES-RAG significantly improves both accuracy and recall, highlighting its effectiveness in advancing the security and utility of question-answering.
arXiv Detail & Related papers (2025-03-17T08:09:42Z) - TrustRAG: An Information Assistant with Retrieval Augmented Generation [73.84864898280719]
TrustRAG is a novel framework that enhances acRAG from three perspectives: indexing, retrieval, and generation.<n>We open-source the TrustRAG framework and provide a demonstration studio designed for excerpt-based question answering tasks.
arXiv Detail & Related papers (2025-02-19T13:45:27Z) - ArchRAG: Attributed Community-based Hierarchical Retrieval-Augmented Generation [16.204046295248546]
Retrieval-Augmented Generation (RAG) has proven effective in integrating external knowledge into large language models (LLMs)<n>We introduce a novel graph-based RAG approach, called Attributed Community-based Hierarchical RAG (ArchRAG)<n>We build a novel hierarchical index structure for the attributed communities and develop an effective online retrieval method.<n>ArchRAG has been successfully applied to domain knowledge QA in Huawei Cloud Computing.
arXiv Detail & Related papers (2025-02-14T03:28:36Z) - GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation [84.41557981816077]
We introduce GFM-RAG, a novel graph foundation model (GFM) for retrieval augmented generation.<n>GFM-RAG is powered by an innovative graph neural network that reasons over graph structure to capture complex query-knowledge relationships.<n>It achieves state-of-the-art performance while maintaining efficiency and alignment with neural scaling laws.
arXiv Detail & Related papers (2025-02-03T07:04:29Z) - Retrieval-Augmented Generation with Graphs (GraphRAG) [84.29507404866257]
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information.<n>Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information.<n>Unlike conventional RAG, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains.
arXiv Detail & Related papers (2024-12-31T06:59:35Z) - Semantic Tokens in Retrieval Augmented Generation [0.0]
I propose a novel Comparative RAG system that introduces an evaluator module to bridge the gap between probabilistic RAG systems and deterministically verifiable responses.<n>This framework paves the way for more reliable and scalable question-answering applications in domains requiring high precision and verifiability.
arXiv Detail & Related papers (2024-12-03T16:52:06Z) - LightRAG: Simple and Fast Retrieval-Augmented Generation [12.86888202297654]
Retrieval-Augmented Generation (RAG) systems enhance large language models (LLMs) by integrating external knowledge sources.<n>Existing RAG systems have significant limitations, including reliance on flat data representations and inadequate contextual awareness.<n>We propose LightRAG, which incorporates graph structures into text indexing and retrieval processes.
arXiv Detail & Related papers (2024-10-08T08:00:12Z) - DuetRAG: Collaborative Retrieval-Augmented Generation [57.440772556318926]
Collaborative Retrieval-Augmented Generation framework, DuetRAG, proposed.
bootstrapping philosophy is to simultaneously integrate the domain fintuning and RAG models.
arXiv Detail & Related papers (2024-05-12T09:48:28Z) - Building Interpretable and Reliable Open Information Retriever for New
Domains Overnight [67.03842581848299]
Information retrieval is a critical component for many down-stream tasks such as open-domain question answering (QA)
We propose an information retrieval pipeline that uses entity/event linking model and query decomposition model to focus more accurately on different information units of the query.
We show that, while being more interpretable and reliable, our proposed pipeline significantly improves passage coverages and denotation accuracies across five IR and QA benchmarks.
arXiv Detail & Related papers (2023-08-09T07:47:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.