MetaSTH-Sleep: Towards Effective Few-Shot Sleep Stage Classification with Spatial-Temporal Hypergraph Enhanced Meta-Learning
- URL: http://arxiv.org/abs/2505.17142v1
- Date: Thu, 22 May 2025 07:09:03 GMT
- Title: MetaSTH-Sleep: Towards Effective Few-Shot Sleep Stage Classification with Spatial-Temporal Hypergraph Enhanced Meta-Learning
- Authors: Jingyu Li, Tiehua Zhang, Jinze Wang, Yi Zhang, Yuhuan Li, Yifan Zhao, Zhishu Shen, Jiannan Liu,
- Abstract summary: We propose MetaSTH-Sleep, a few-shot sleep stage classification framework based on spatial-temporal hypergraph enhanced meta-learning.<n>Our approach enables rapid adaptation to new subjects using only a few labeled samples, while the hypergraph structure effectively models complex spatial interconnections and temporal dynamics simultaneously in EEG signals.
- Score: 15.98498716083678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate classification of sleep stages based on bio-signals is fundamental for automatic sleep stage annotation. Traditionally, this task relies on experienced clinicians to manually annotate data, a process that is both time-consuming and labor-intensive. In recent years, deep learning methods have shown promise in automating this task. However, three major challenges remain: (1) deep learning models typically require large-scale labeled datasets, making them less effective in real-world settings where annotated data is limited; (2) significant inter-individual variability in bio-signals often results in inconsistent model performance when applied to new subjects, limiting generalization; and (3) existing approaches often overlook the high-order relationships among bio-signals, failing to simultaneously capture signal heterogeneity and spatial-temporal dependencies. To address these issues, we propose MetaSTH-Sleep, a few-shot sleep stage classification framework based on spatial-temporal hypergraph enhanced meta-learning. Our approach enables rapid adaptation to new subjects using only a few labeled samples, while the hypergraph structure effectively models complex spatial interconnections and temporal dynamics simultaneously in EEG signals. Experimental results demonstrate that MetaSTH-Sleep achieves substantial performance improvements across diverse subjects, offering valuable insights to support clinicians in sleep stage annotation.
Related papers
- PSDNorm: Test-Time Temporal Normalization for Deep Learning in Sleep Staging [63.05435596565677]
We propose PSDNorm that leverages Monge mapping and temporal context to normalize feature maps in deep learning models for signals.<n> PSDNorm achieves state-of-the-art performance on unseen left-out datasets while being 4-times more data-efficient than BatchNorm.
arXiv Detail & Related papers (2025-03-06T16:20:25Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - NeuroNet: A Novel Hybrid Self-Supervised Learning Framework for Sleep Stage Classification Using Single-Channel EEG [2.3310092106321365]
Sleep stage classification is a pivotal aspect of diagnosing sleep disorders and evaluating sleep quality.
Recent advancements in deep learning have substantially propelled the automation of sleep stage classification.
This paper introduces NeuroNet, a self-supervised learning framework designed to harness unlabeled single-channel sleep electroencephalogram (EEG) signals.
arXiv Detail & Related papers (2024-04-10T18:32:22Z) - Exploiting Spatial-temporal Data for Sleep Stage Classification via
Hypergraph Learning [16.802013781690402]
We propose a dynamic learning framework STHL, which introduces hypergraph to encode spatial-temporal data for sleep stage classification.
Our proposed STHL outperforms the state-of-the-art models in sleep stage classification tasks.
arXiv Detail & Related papers (2023-09-05T11:01:30Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Time Associated Meta Learning for Clinical Prediction [78.99422473394029]
We propose a novel time associated meta learning (TAML) method to make effective predictions at multiple future time points.
To address the sparsity problem after task splitting, TAML employs a temporal information sharing strategy to augment the number of positive samples.
We demonstrate the effectiveness of TAML on multiple clinical datasets, where it consistently outperforms a range of strong baselines.
arXiv Detail & Related papers (2023-03-05T03:54:54Z) - SleePyCo: Automatic Sleep Scoring with Feature Pyramid and Contrastive
Learning [0.0]
We propose a deep learning framework named SleePyCo that incorporates 1) a feature pyramid and 2) supervised contrastive learning for automatic sleep scoring.
For the feature pyramid, we propose a backbone network named SleePyCo-backbone to consider multiple feature sequences on different temporal and frequency scales.
Supervised contrastive learning allows the network to extract class discriminative features by minimizing the distance between intra-class features and simultaneously maximizing that between inter-class features.
arXiv Detail & Related papers (2022-09-20T04:10:49Z) - TransSleep: Transitioning-aware Attention-based Deep Neural Network for
Sleep Staging [2.105172041656126]
We propose a novel deep neural network structure, TransSleep, that captures distinctive local temporal patterns.
Results show that TransSleep achieves promising performance in automatic sleep staging.
arXiv Detail & Related papers (2022-03-22T08:55:32Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Text Recognition in Real Scenarios with a Few Labeled Samples [55.07859517380136]
Scene text recognition (STR) is still a hot research topic in computer vision field.
This paper proposes a few-shot adversarial sequence domain adaptation (FASDA) approach to build sequence adaptation.
Our approach can maximize the character-level confusion between the source domain and the target domain.
arXiv Detail & Related papers (2020-06-22T13:03:01Z) - MetaSleepLearner: A Pilot Study on Fast Adaptation of Bio-signals-Based
Sleep Stage Classifier to New Individual Subject Using Meta-Learning [15.451212330924447]
We propose the transfer learning framework, entitled MetaSleepLearner, based on Model Agnostic Meta-Learning (MAML)
In comparison to the conventional approach, MetaSleepLearner achieved a range of 5.4% to 17.7% improvement with statistical difference in the mean of both approaches.
This is the first work that investigated a non-conventional pre-training method, MAML, resulting in a possibility for human-machine collaboration in sleep stage classification.
arXiv Detail & Related papers (2020-04-08T16:31:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.