PSDNorm: Test-Time Temporal Normalization for Deep Learning in Sleep Staging
- URL: http://arxiv.org/abs/2503.04582v2
- Date: Tue, 20 May 2025 14:39:57 GMT
- Title: PSDNorm: Test-Time Temporal Normalization for Deep Learning in Sleep Staging
- Authors: Théo Gnassounou, Antoine Collas, Rémi Flamary, Alexandre Gramfort,
- Abstract summary: We propose PSDNorm that leverages Monge mapping and temporal context to normalize feature maps in deep learning models for signals.<n> PSDNorm achieves state-of-the-art performance on unseen left-out datasets while being 4-times more data-efficient than BatchNorm.
- Score: 63.05435596565677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distribution shift poses a significant challenge in machine learning, particularly in biomedical applications using data collected across different subjects, institutions, and recording devices, such as sleep data. While existing normalization layers, BatchNorm, LayerNorm and InstanceNorm, help mitigate distribution shifts, when applied over the time dimension they ignore the dependencies and auto-correlation inherent to the vector coefficients they normalize. In this paper, we propose PSDNorm that leverages Monge mapping and temporal context to normalize feature maps in deep learning models for signals. Notably, the proposed method operates as a test-time domain adaptation technique, addressing distribution shifts without additional training. Evaluations with architectures based on U-Net or transformer backbones trained on 10K subjects across 10 datasets, show that PSDNorm achieves state-of-the-art performance on unseen left-out datasets while being 4-times more data-efficient than BatchNorm.
Related papers
- Understanding the Limits of Deep Tabular Methods with Temporal Shift [28.738848567072004]
We introduce a plug-and-play temporal embedding method based on Fourier series expansion to learn and incorporate temporal patterns.<n>Our experiments demonstrate that this temporal embedding, combined with the improved training protocol, provides a more effective and robust framework for learning from temporal data.
arXiv Detail & Related papers (2025-02-27T16:48:53Z) - ST-FiT: Inductive Spatial-Temporal Forecasting with Limited Training Data [59.78770412981611]
In real-world applications, most nodes may not possess any available temporal data during training.
We propose a principled framework named ST-FiT to handle this problem.
arXiv Detail & Related papers (2024-12-14T17:51:29Z) - SONNET: Enhancing Time Delay Estimation by Leveraging Simulated Audio [17.811771707446926]
We show that learning based methods can, even based on synthetic data, significantly outperform GCC-PHAT on novel real world data.
We provide our trained model, SONNET, which is runnable in real-time and works on novel data out of the box for many real data applications.
arXiv Detail & Related papers (2024-11-20T10:23:21Z) - Automatic Classification of Sleep Stages from EEG Signals Using Riemannian Metrics and Transformer Networks [6.404789669795639]
In sleep medicine, assessing the evolution of a subject's sleep often involves the costly manual scoring of electroencephalographic (EEG) signals.
We present a novel way of integrating learned signal-wise features into said matrices without sacrificing their Symmetric Definite Positive (SPD) nature.
arXiv Detail & Related papers (2024-10-18T06:49:52Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
This paper focuses on addressing the challenging yet practical few-shot online anomaly detection and segmentation (FOADS) task.
Under the FOADS framework, models are trained on a few-shot normal dataset, followed by inspection and improvement of their capabilities by leveraging unlabeled streaming data containing both normal and abnormal samples simultaneously.
In order to achieve improved performance with limited training samples, we employ multi-scale feature embedding extracted from a CNN pre-trained on ImageNet to obtain a robust representation.
arXiv Detail & Related papers (2024-03-27T02:24:00Z) - SMORE: Similarity-based Hyperdimensional Domain Adaptation for
Multi-Sensor Time Series Classification [17.052624039805856]
We propose SMORE, a novel resource-efficient domain adaptation (DA) algorithm for multi-sensor time series classification.
SMORE achieves on average 1.98% higher accuracy than state-of-the-art (SOTA) DNN-based DA algorithms with 18.81x faster training and 4.63x faster inference.
arXiv Detail & Related papers (2024-02-20T18:48:49Z) - Extended Deep Adaptive Input Normalization for Preprocessing Time Series
Data for Neural Networks [0.0]
We propose the EDAIN layer, a novel adaptive neural layer that learns how to appropriately normalize irregular time series data for a given task in an end-to-end fashion.
Our experiments, conducted using synthetic data, a credit default prediction dataset, and a large-scale limit order book benchmark dataset, demonstrate the superior performance of the EDAIN layer.
arXiv Detail & Related papers (2023-10-23T08:56:01Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Quantifying the Impact of Data Characteristics on the Transferability of
Sleep Stage Scoring Models [0.10878040851637998]
Deep learning models for scoring sleep stages based on single-channel EEG have been proposed as a promising method for remote sleep monitoring.
Applying these models to new datasets, particularly from wearable devices, raises two questions.
First, when annotations on a target dataset are unavailable, which different data characteristics affect the sleep stage scoring performance the most and by how much?
We propose a novel method for quantifying the impact of different data characteristics on the transferability of deep learning models.
arXiv Detail & Related papers (2023-03-28T07:57:21Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
We develop a methodology for assessing the robustness of models to subpopulation shift.
We leverage the class structure underlying existing datasets to control the data subpopulations that comprise the training and test distributions.
Applying this methodology to the ImageNet dataset, we create a suite of subpopulation shift benchmarks of varying granularity.
arXiv Detail & Related papers (2020-08-11T17:04:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.