DEL-ToM: Inference-Time Scaling for Theory-of-Mind Reasoning via Dynamic Epistemic Logic
- URL: http://arxiv.org/abs/2505.17348v1
- Date: Thu, 22 May 2025 23:52:56 GMT
- Title: DEL-ToM: Inference-Time Scaling for Theory-of-Mind Reasoning via Dynamic Epistemic Logic
- Authors: Yuheng Wu, Jianwen Xie, Denghui Zhang, Zhaozhuo Xu,
- Abstract summary: Theory-of-Mind (ToM) tasks pose a unique challenge for small language models (SLMs) with limited scale.<n>We propose DEL-ToM, a framework that improves ToM reasoning through inference-time scaling.
- Score: 28.54147281933252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Theory-of-Mind (ToM) tasks pose a unique challenge for small language models (SLMs) with limited scale, which often lack the capacity to perform deep social reasoning. In this work, we propose DEL-ToM, a framework that improves ToM reasoning through inference-time scaling rather than architectural changes. Our approach decomposes ToM tasks into a sequence of belief updates grounded in Dynamic Epistemic Logic (DEL), enabling structured and transparent reasoning. We train a verifier, called the Process Belief Model (PBM), to score each belief update step using labels generated automatically via a DEL simulator. During inference, candidate belief traces generated by a language model are evaluated by the PBM, and the highest-scoring trace is selected. This allows SLMs to emulate more deliberate reasoning by allocating additional compute at test time. Experiments across multiple model scales and benchmarks show that DEL-ToM consistently improves performance, demonstrating that verifiable belief supervision can significantly enhance ToM abilities of SLMs without retraining.
Related papers
- Beyond Templates: Dynamic Adaptation of Reasoning Demonstrations via Feasibility-Aware Exploration [15.711365331854614]
We introduce Dynamic Adaptation of Reasoning Trajectories (DART), a novel data adaptation framework.<n>Instead of uniformly imitating expert steps, DART employs a selective imitation strategy guided by step-wise adaptability estimation.<n>We validate DART across multiple reasoning benchmarks and model scales, demonstrating that it significantly improves generalization and data efficiency.
arXiv Detail & Related papers (2025-05-27T04:08:11Z) - Model Utility Law: Evaluating LLMs beyond Performance through Mechanism Interpretable Metric [99.56567010306807]
Large Language Models (LLMs) have become indispensable across academia, industry, and daily applications.<n>One core challenge of evaluation in the large language model (LLM) era is the generalization issue.<n>We propose Model Utilization Index (MUI), a mechanism interpretability enhanced metric that complements traditional performance scores.
arXiv Detail & Related papers (2025-04-10T04:09:47Z) - Do Theory of Mind Benchmarks Need Explicit Human-like Reasoning in Language Models? [14.29992535286614]
Theory of Mind (ToM) is the ability to attribute mental states to others.<n>Recent advancements in Large Language Models have shown promising performance on ToM benchmarks.<n>Do these benchmarks necessitate explicit human-like reasoning processes, or can models succeed through alternative strategies?
arXiv Detail & Related papers (2025-04-02T12:58:42Z) - R-PRM: Reasoning-Driven Process Reward Modeling [53.06844294668382]
Process Reward Models (PRMs) have emerged as a promising solution by evaluating each reasoning step.<n>Existing PRMs typically output evaluation scores directly, limiting both learning efficiency and evaluation accuracy.<n>We propose Reasoning-Driven Process Reward Modeling (R-PRM)<n>R-PRM generates seed data from limited annotations, effectively bootstrapping our model's reasoning capabilities.
arXiv Detail & Related papers (2025-03-27T09:23:08Z) - Your Language Model May Think Too Rigidly: Achieving Reasoning Consistency with Symmetry-Enhanced Training [66.48331530995786]
We propose syMmetry-ENhanceD (MEND) Data Augmentation, a data-centric approach that improves the model's ability to extract useful information from context.<n>Unlike existing methods that emphasize reasoning chain augmentation, our approach improves model robustness at the knowledge extraction stage.<n>Experiments on both logical and arithmetic reasoning tasks show that MEND enhances reasoning performance across diverse query variations.
arXiv Detail & Related papers (2025-02-25T03:03:35Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.<n>We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model.<n>We introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps.
arXiv Detail & Related papers (2025-01-31T02:39:07Z) - Decompose-ToM: Enhancing Theory of Mind Reasoning in Large Language Models through Simulation and Task Decomposition [2.089191490381739]
Theory of Mind (ToM) is the ability to understand and reflect on the mental states of others.<n>Large Language Models (LLMs) possess only a rudimentary understanding of ToM.<n>We propose Decompose-ToM'': an LLM-based inference algorithm that improves model performance on complex ToM tasks.
arXiv Detail & Related papers (2025-01-15T18:44:01Z) - Theoretical Foundations of Deep Selective State-Space Models [13.971499161967083]
Deep SSMs demonstrate outstanding performance across a diverse set of domains.<n>Recent developments show that if the linear recurrence powering SSMs allows for multiplicative interactions between inputs and hidden states.<n>We show that when random linear recurrences are equipped with simple input-controlled transitions, then the hidden state is provably a low-dimensional projection of a powerful mathematical object.
arXiv Detail & Related papers (2024-02-29T11:20:16Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.