Reflectance Prediction-based Knowledge Distillation for Robust 3D Object Detection in Compressed Point Clouds
- URL: http://arxiv.org/abs/2505.17442v1
- Date: Fri, 23 May 2025 03:52:27 GMT
- Title: Reflectance Prediction-based Knowledge Distillation for Robust 3D Object Detection in Compressed Point Clouds
- Authors: Hao Jing, Anhong Wang, Yifan Zhang, Donghan Bu, Junhui Hou,
- Abstract summary: This paper proposes a 3D object detection framework with reflectance prediction-based knowledge distillation (RPKD)<n>We compress point coordinates while discarding reflectance during low-bitrate transmission, and feed the decoded non-reflectance compressed point clouds into a student detector.<n>Our method can boost detection accuracy for compressed point clouds across multiple code rates.
- Score: 45.694869892846945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Regarding intelligent transportation systems for vehicle networking, low-bitrate transmission via lossy point cloud compression is vital for facilitating real-time collaborative perception among vehicles with restricted bandwidth. In existing compression transmission systems, the sender lossily compresses point coordinates and reflectance to generate a transmission code stream, which faces transmission burdens from reflectance encoding and limited detection robustness due to information loss. To address these issues, this paper proposes a 3D object detection framework with reflectance prediction-based knowledge distillation (RPKD). We compress point coordinates while discarding reflectance during low-bitrate transmission, and feed the decoded non-reflectance compressed point clouds into a student detector. The discarded reflectance is then reconstructed by a geometry-based reflectance prediction (RP) module within the student detector for precise detection. A teacher detector with the same structure as student detector is designed for performing reflectance knowledge distillation (RKD) and detection knowledge distillation (DKD) from raw to compressed point clouds. Our RPKD framework jointly trains detectors on both raw and compressed point clouds to improve the student detector's robustness. Experimental results on the KITTI dataset and Waymo Open Dataset demonstrate that our method can boost detection accuracy for compressed point clouds across multiple code rates. Notably, at a low code rate of 2.146 Bpp on the KITTI dataset, our RPKD-PV achieves the highest mAP of 73.6, outperforming existing detection methods with the PV-RCNN baseline.
Related papers
- ROI-Guided Point Cloud Geometry Compression Towards Human and Machine Vision [0.0]
We introduce a novel Region of Interest-guided Point Cloud Geometry Compression (RPCGC) method for human and machine vision.<n>Our framework employs a dual-branch parallel structure, where the base layer encodes and decodes a simplified version of the point cloud.<n>We intricately apply these mask details in the Rate-Distortion (RD) optimization process, with each point weighted in the distortion calculation.
arXiv Detail & Related papers (2025-04-19T09:31:37Z) - Poster: Making Edge-assisted LiDAR Perceptions Robust to Lossy Point
Cloud Compression [0.0]
We present an algorithm improving the quality of a LiDAR point cloud to mitigate the perception performance loss due to lossy compression.
Compared to existing image algorithms, our algorithm shows a better qualitative result when the point cloud is reconstructed from the range image.
arXiv Detail & Related papers (2023-09-08T18:34:48Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to simulate features and responses that follow a multi-modality (LiDAR-image) detector.
The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference.
Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors.
arXiv Detail & Related papers (2022-06-30T01:44:30Z) - Knowledge Distillation for Oriented Object Detection on Aerial Images [1.827510863075184]
We present a model compression method for rotated object detection on aerial images by knowledge distillation, namely KD-RNet.
The experimental result on a large-scale aerial object detection dataset (DOTA) demonstrates that the proposed KD-RNet model can achieve improved mean-average precision (mAP) with reduced number of parameters, at the same time, KD-RNet boost the performance on providing high quality detections with higher overlap with groundtruth annotations.
arXiv Detail & Related papers (2022-06-20T14:24:16Z) - itKD: Interchange Transfer-based Knowledge Distillation for 3D Object
Detection [3.735965959270874]
We propose an autoencoder-style framework comprising channel-wise compression and decompression.
To learn the map-view feature of a teacher network, the features from teacher and student networks are independently passed through the shared autoencoder.
We present an head attention loss to match the 3D object detection information drawn by the multi-head self-attention mechanism.
arXiv Detail & Related papers (2022-05-31T04:25:37Z) - R-AGNO-RPN: A LIDAR-Camera Region Deep Network for Resolution-Agnostic
Detection [3.4761212729163313]
R-AGNO-RPN, a region proposal network built on fusion of 3D point clouds and RGB images is proposed.
Our approach is designed to be also applied on low point cloud resolutions.
arXiv Detail & Related papers (2020-12-10T15:22:58Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
We propose a binarized neural network learning method called BiDet for efficient object detection.
Our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal.
Our method outperforms the state-of-the-art binary neural networks by a sizable margin.
arXiv Detail & Related papers (2020-03-09T08:16:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.