論文の概要: Twin-2K-500: A dataset for building digital twins of over 2,000 people based on their answers to over 500 questions
- arxiv url: http://arxiv.org/abs/2505.17479v1
- Date: Fri, 23 May 2025 05:05:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:33.829211
- Title: Twin-2K-500: A dataset for building digital twins of over 2,000 people based on their answers to over 500 questions
- Title(参考訳): Twin-2K-500:500以上の質問に対する回答に基づいて2000人以上のデジタル双子を構築するためのデータセット
- Authors: Olivier Toubia, George Z. Gui, Tianyi Peng, Daniel J. Merlau, Ang Li, Haozhe Chen,
- Abstract要約: LLMベースのデジタルツインシミュレーションは、AI、社会科学、デジタル実験の研究に大いに貢献する。
我々は、米国におけるN = 2,058$参加者(平均2.42時間)の代表サンプルを、合計500の質問を含む4つの波で調査した。
最初の分析では、データは高品質であることが示唆され、個人と集合レベルでの人間の振る舞いを良く予測するデジタルツインの構築が約束されている。
- 参考スコア(独自算出の注目度): 11.751234495886674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: LLM-based digital twin simulation, where large language models are used to emulate individual human behavior, holds great promise for research in AI, social science, and digital experimentation. However, progress in this area has been hindered by the scarcity of real, individual-level datasets that are both large and publicly available. This lack of high-quality ground truth limits both the development and validation of digital twin methodologies. To address this gap, we introduce a large-scale, public dataset designed to capture a rich and holistic view of individual human behavior. We survey a representative sample of $N = 2,058$ participants (average 2.42 hours per person) in the US across four waves with 500 questions in total, covering a comprehensive battery of demographic, psychological, economic, personality, and cognitive measures, as well as replications of behavioral economics experiments and a pricing survey. The final wave repeats tasks from earlier waves to establish a test-retest accuracy baseline. Initial analyses suggest the data are of high quality and show promise for constructing digital twins that predict human behavior well at the individual and aggregate levels. By making the full dataset publicly available, we aim to establish a valuable testbed for the development and benchmarking of LLM-based persona simulations. Beyond LLM applications, due to its unique breadth and scale the dataset also enables broad social science research, including studies of cross-construct correlations and heterogeneous treatment effects.
- Abstract(参考訳): LLMベースのデジタルツインシミュレーションでは、個々の人間の振る舞いをエミュレートするために大きな言語モデルが使用されるが、AI、社会科学、デジタル実験の研究には大きな期待がある。
しかし、この領域の進歩は、大規模かつ公開可能な実際の個人レベルのデータセットの不足によって妨げられている。
この高品質な基底真理の欠如は、デジタル双対法の開発と検証の両方を制限している。
このギャップに対処するために、個人行動の豊かで全体像を捉えるために設計された大規模でパブリックなデータセットを導入する。
我々は,アメリカにおけるN = 2,058$参加者(平均2.42時間)の代表的サンプルを,人口統計,心理,経済,人格,認知の総合的バッテリー,行動経済学実験の再現,価格調査の4つの波で調査した。
最後のウェーブは、以前のウェーブからのタスクを繰り返して、テスト-テスト精度のベースラインを確立する。
最初の分析では、データは高品質であることが示唆され、個人と集合レベルでの人間の振る舞いを良く予測するデジタルツインの構築が約束されている。
完全なデータセットを公開することにより、LLMに基づくペルソナシミュレーションの開発とベンチマークのための貴重なテストベッドを確立することを目指している。
LLMの応用以外にも、データセットの幅と規模により、クロスコンストラクチャ相関や不均一な治療効果など、幅広い社会科学研究が可能になる。
関連論文リスト
- LLM Generated Persona is a Promise with a Catch [18.45442859688198]
ペルソナをベースとしたシミュレーションは、人口レベルのフィードバックに依存した変革の規律を約束する。
現実的なペルソナデータを収集する従来の方法は課題に直面します。
プライバシーの制約により、違法に高価で物議を醸している。
論文 参考訳(メタデータ) (2025-03-18T03:11:27Z) - How Far are LLMs from Being Our Digital Twins? A Benchmark for Persona-Based Behavior Chain Simulation [30.713599131902566]
本稿では,デジタル双生児が連続した人間の行動をシミュレートする能力を評価する最初のベンチマークであるBehavimentChainを紹介する。
BehaviorChainは、多種多様で高品質なペルソナベースの行動連鎖で構成され、1,001のユニークなペルソナに対して15,846の異なる振る舞いがある。
総合的な評価結果は、最先端モデルでさえ、連続した人間の行動の正確なシミュレートに苦慮していることを示している。
論文 参考訳(メタデータ) (2025-02-20T15:29:32Z) - From Individual to Society: A Survey on Social Simulation Driven by Large Language Model-based Agents [47.935533238820334]
伝統的な社会学研究は、しばしば人間の参加に頼っているが、それは効果的だが、高価であり、スケールが困難であり、倫理的な懸念がある。
大規模言語モデル(LLM)の最近の進歩は、人間の振る舞いをシミュレートし、個々の反応の複製を可能にし、多くの学際的な研究を容易にする可能性を強調している。
シミュレーションは,(1)特定の個人や人口集団を模倣する個人シミュレーション,(2)複数のエージェントが協調して特定の状況における目標を達成するシナリオシミュレーション,(3)エージェント社会内の相互作用をモデル化して実世界のダイナミクスの複雑さや多様性を反映するシミュレーション社会の3種類に分類される。
論文 参考訳(メタデータ) (2024-12-04T18:56:37Z) - Generative Agent Simulations of 1,000 People [56.82159813294894]
本稿では,1,052人の実人の態度と行動をシミュレートする新しいエージェントアーキテクチャを提案する。
生成エージェントは一般社会調査の参加者の回答を85%の精度で再現する。
我々のアーキテクチャは、人種的およびイデオロギー的グループにおける正確さのバイアスを、人口統計学的記述のエージェントと比較して低減する。
論文 参考訳(メタデータ) (2024-11-15T11:14:34Z) - Synthesizing Post-Training Data for LLMs through Multi-Agent Simulation [51.20656279478878]
MATRIXは、様々なテキストベースのシナリオを自動的に生成するマルチエージェントシミュレータである。
制御可能でリアルなデータ合成のためのMATRIX-Genを紹介する。
AlpacaEval 2 と Arena-Hard のベンチマークでは、Llama-3-8B-Base が、MATRIX-Gen によって合成されたデータセット上で、たった 20K の命令応答ペアで、Meta の Llama-3-8B-Instruct モデルより優れています。
論文 参考訳(メタデータ) (2024-10-18T08:01:39Z) - Agentic Society: Merging skeleton from real world and texture from Large Language Model [4.740886789811429]
本稿では,人口統計データと大規模言語モデルを利用して仮想人口を生成する新しい枠組みについて検討する。
本手法は,社会科学実験において,多様な人間の行動のシミュレーションに不可欠な多様性のあるペルソナを生産することを示す。
しかし, 評価結果から, 現在のLSMの能力に限界があるため, 統計的真理性の弱い兆候しか得られないことが示唆された。
論文 参考訳(メタデータ) (2024-09-02T08:28:19Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
本研究では,人間中心型視覚タスクにおけるデータ拡張手法の包括的分析を行う。
それは、人物のReID、人間のパーシング、人間のポーズ推定、歩行者検出など、幅広い研究領域に展開している。
我々の研究は、データ拡張手法をデータ生成とデータ摂動の2つの主なタイプに分類する。
論文 参考訳(メタデータ) (2024-03-13T16:05:18Z) - DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation [83.30006900263744]
データ分析は、詳細な研究と決定的な洞察を生み出すための重要な分析プロセスである。
LLMのコード生成機能を活用した高品質な応答アノテーションの自動生成を提案する。
我々のDACO-RLアルゴリズムは、57.72%のケースにおいて、SFTモデルよりも有用な回答を生成するために、人間のアノテータによって評価される。
論文 参考訳(メタデータ) (2024-03-04T22:47:58Z) - FiFAR: A Fraud Detection Dataset for Learning to Defer [9.187694794359498]
本研究では、銀行口座不正検出データセットであるFiFAR(Financial Fraud Alert Review dataset)を紹介する。
FiFARには、複雑な50人のチームによる予測が含まれている。
我々は,本データセットを用いて,現実的なデータ可用性条件下でのキャパシティを意識したL2D法と拒絶学習手法を開発した。
論文 参考訳(メタデータ) (2023-12-20T17:36:36Z) - PeopleSansPeople: A Synthetic Data Generator for Human-Centric Computer
Vision [3.5694949627557846]
我々は人間中心の合成データ生成装置 PeopleSansPeople をリリースする。
シミュレーション可能な3Dアセット、パラメータ化照明とカメラシステム、および2Dおよび3Dバウンディングボックス、インスタンスとセマンティックセグメンテーション、COCOポーズラベルを生成する。
論文 参考訳(メタデータ) (2021-12-17T02:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。