DTRT: Enhancing Human Intent Estimation and Role Allocation for Physical Human-Robot Collaboration
- URL: http://arxiv.org/abs/2505.17490v2
- Date: Mon, 26 May 2025 15:15:40 GMT
- Title: DTRT: Enhancing Human Intent Estimation and Role Allocation for Physical Human-Robot Collaboration
- Authors: Haotian Liu, Yuchuang Tong, Zhengtao Zhang,
- Abstract summary: Human intent estimation and rational human-robot role allocation are crucial for safe and efficient assistance.<n>We propose a Dual Transformer-based Robot Trajectron (DTRT) featuring a hierarchical architecture, which harnesses human-guided motion and force data.<n>Experiments demonstrate DTRT's accurate intent estimation and superior collaboration performance.
- Score: 8.019409744686877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In physical Human-Robot Collaboration (pHRC), accurate human intent estimation and rational human-robot role allocation are crucial for safe and efficient assistance. Existing methods that rely on short-term motion data for intention estimation lack multi-step prediction capabilities, hindering their ability to sense intent changes and adjust human-robot assignments autonomously, resulting in potential discrepancies. To address these issues, we propose a Dual Transformer-based Robot Trajectron (DTRT) featuring a hierarchical architecture, which harnesses human-guided motion and force data to rapidly capture human intent changes, enabling accurate trajectory predictions and dynamic robot behavior adjustments for effective collaboration. Specifically, human intent estimation in DTRT uses two Transformer-based Conditional Variational Autoencoders (CVAEs), incorporating robot motion data in obstacle-free case with human-guided trajectory and force for obstacle avoidance. Additionally, Differential Cooperative Game Theory (DCGT) is employed to synthesize predictions based on human-applied forces, ensuring robot behavior align with human intention. Compared to state-of-the-art (SOTA) methods, DTRT incorporates human dynamics into long-term prediction, providing an accurate understanding of intention and enabling rational role allocation, achieving robot autonomy and maneuverability. Experiments demonstrate DTRT's accurate intent estimation and superior collaboration performance.
Related papers
- Towards Immersive Human-X Interaction: A Real-Time Framework for Physically Plausible Motion Synthesis [51.95817740348585]
Human-X is a novel framework designed to enable immersive and physically plausible human interactions across diverse entities.<n>Our method jointly predicts actions and reactions in real-time using an auto-regressive reaction diffusion planner.<n>Our framework is validated in real-world applications, including virtual reality interface for human-robot interaction.
arXiv Detail & Related papers (2025-08-04T06:35:48Z) - H-RDT: Human Manipulation Enhanced Bimanual Robotic Manipulation [27.585828712261232]
H-RDT (Human to Robotics Diffusion Transformer) is a novel approach that leverages human manipulation data to enhance robot manipulation capabilities.<n>Our key insight is that large-scale egocentric human manipulation videos with paired 3D hand pose annotations provide rich behavioral priors that capture natural manipulation strategies.<n>We introduce a two-stage training paradigm: (1) pre-training on large-scale egocentric human manipulation data, and (2) cross-embodiment fine-tuning on robot-specific data with modular action encoders and decoders.
arXiv Detail & Related papers (2025-07-31T13:06:59Z) - Robot-R1: Reinforcement Learning for Enhanced Embodied Reasoning in Robotics [55.05920313034645]
We introduce Robot-R1, a novel framework that leverages reinforcement learning to enhance embodied reasoning specifically for robot control.<n>Inspired by the DeepSeek-R1 learning approach, Robot-R1 samples reasoning-based responses and reinforces those that lead to more accurate predictions.<n>Our experiments show that models trained with Robot-R1 outperform SFT methods on embodied reasoning tasks.
arXiv Detail & Related papers (2025-05-29T16:41:12Z) - Human-Humanoid Robots Cross-Embodiment Behavior-Skill Transfer Using Decomposed Adversarial Learning from Demonstration [9.42179962375058]
We propose a transferable framework that reduces the data bottleneck by using a unified digital human model as a common prototype.<n>The model learns behavior primitives from human demonstrations through adversarial imitation, and complex robot structures are decomposed into functional components.<n>Our framework is validated on five humanoid robots with diverse configurations.
arXiv Detail & Related papers (2024-12-19T18:41:45Z) - Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition [48.65867987106428]
We introduce a novel system for joint learning between human operators and robots.
It enables human operators to share control of a robot end-effector with a learned assistive agent.
It reduces the need for human adaptation while ensuring the collected data is of sufficient quality for downstream tasks.
arXiv Detail & Related papers (2024-06-29T03:37:29Z) - Human-Robot Skill Transfer with Enhanced Compliance via Dynamic Movement
Primitives [1.7901837062462316]
We introduce a systematic method to extract the dynamic features from human demonstration to auto-tune the parameters in the Dynamic Movement Primitives framework.
Our method was implemented into an actual human-robot setup to extract human dynamic features and used to regenerate the robot trajectories following both LfD and RL.
arXiv Detail & Related papers (2023-04-12T08:48:28Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Active Uncertainty Learning for Human-Robot Interaction: An Implicit
Dual Control Approach [5.05828899601167]
We present an algorithmic approach to enable uncertainty learning for human-in-the-loop motion planning based on the implicit dual control paradigm.
Our approach relies on sampling-based approximation of dynamic programming model predictive control problem.
The resulting policy is shown to preserve the dual control effect for generic human predictive models with both continuous and categorical uncertainty.
arXiv Detail & Related papers (2022-02-15T20:40:06Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z) - Leveraging Neural Network Gradients within Trajectory Optimization for
Proactive Human-Robot Interactions [32.57882479132015]
We present a framework that fuses together the interpretability and flexibility of trajectory optimization (TO) with the predictive power of state-of-the-art human trajectory prediction models.
We demonstrate the efficacy of our approach in a multi-agent scenario whereby a robot is required to safely and efficiently navigate through a crowd of up to ten pedestrians.
arXiv Detail & Related papers (2020-12-02T08:43:36Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
We propose an approach for human-to-robot handovers in which the robot meets the human halfway.
We collect a human grasp dataset which covers typical ways of holding objects with various hand shapes and poses.
We present a planning and execution approach that takes the object from the human hand according to the detected grasp and hand position.
arXiv Detail & Related papers (2020-03-12T19:58:03Z) - Human-robot co-manipulation of extended objects: Data-driven models and
control from analysis of human-human dyads [2.7036498789349244]
We use data from human-human dyad experiments to determine motion intent which we use for a physical human-robot co-manipulation task.
We develop a deep neural network based on motion data from human-human trials to predict human intent based on past motion.
arXiv Detail & Related papers (2020-01-03T21:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.