FreqU-FNet: Frequency-Aware U-Net for Imbalanced Medical Image Segmentation
- URL: http://arxiv.org/abs/2505.17544v1
- Date: Fri, 23 May 2025 06:51:24 GMT
- Title: FreqU-FNet: Frequency-Aware U-Net for Imbalanced Medical Image Segmentation
- Authors: Ruiqi Xing,
- Abstract summary: FreqU-FNet is a novel U-shaped segmentation architecture operating in the frequency domain.<n>Our framework incorporates a Frequency that leverages Low-Pass Convolution and Daubechies wavelet-based downsampling.<n>Experiments on multiple medical segmentation benchmarks demonstrate that FreqU-FNet consistently outperforms both CNN and Transformer baselines.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Medical image segmentation faces persistent challenges due to severe class imbalance and the frequency-specific distribution of anatomical structures. Most conventional CNN-based methods operate in the spatial domain and struggle to capture minority class signals, often affected by frequency aliasing and limited spectral selectivity. Transformer-based models, while powerful in modeling global dependencies, tend to overlook critical local details necessary for fine-grained segmentation. To overcome these limitations, we propose FreqU-FNet, a novel U-shaped segmentation architecture operating in the frequency domain. Our framework incorporates a Frequency Encoder that leverages Low-Pass Frequency Convolution and Daubechies wavelet-based downsampling to extract multi-scale spectral features. To reconstruct fine spatial details, we introduce a Spatial Learnable Decoder (SLD) equipped with an adaptive multi-branch upsampling strategy. Furthermore, we design a frequency-aware loss (FAL) function to enhance minority class learning. Extensive experiments on multiple medical segmentation benchmarks demonstrate that FreqU-FNet consistently outperforms both CNN and Transformer baselines, particularly in handling under-represented classes, by effectively exploiting discriminative frequency bands.
Related papers
- Frequency-enhanced Multi-granularity Context Network for Efficient Vertebrae Segmentation [33.99418884128739]
We introduce a Frequency-enhanced Multi-granularity Context Network (FMC-Net) to improve vertebrae segmentation accuracy.<n>For the high-frequency components, we apply a High-frequency Feature Refinement (HFR) to amplify the prominence of key features.<n>For the low-frequency components, we use a Multi-granularity State Space Model (MG-SSM) to aggregate feature representations with different receptive fields.
arXiv Detail & Related papers (2025-06-29T04:53:02Z) - FADPNet: Frequency-Aware Dual-Path Network for Face Super-Resolution [70.61549422952193]
Face super-resolution (FSR) under limited computational costs remains an open problem.<n>Existing approaches typically treat all facial pixels equally, resulting in suboptimal allocation of computational resources.<n>We propose FADPNet, a Frequency-Aware Dual-Path Network that decomposes facial features into low- and high-frequency components.
arXiv Detail & Related papers (2025-06-17T02:33:42Z) - Freqformer: Image-Demoiréing Transformer via Efficient Frequency Decomposition [83.40450475728792]
We present Freqformer, a Transformer-based framework specifically designed for image demoir'eing through targeted frequency separation.<n>Our method performs an effective frequency decomposition that explicitly splits moir'e patterns into high-frequency spatially-localized textures and low-frequency scale-robust color distortions.<n>Experiments on various demoir'eing benchmarks demonstrate that Freqformer achieves state-of-the-art performance with a compact model size.
arXiv Detail & Related papers (2025-05-25T12:23:10Z) - FAD: Frequency Adaptation and Diversion for Cross-domain Few-shot Learning [35.40065954148091]
Cross-domain few-shot learning requires models to generalize from limited labeled samples under significant distribution shifts.<n>We introduce Frequency Adaptation and Diversion (FAD), a frequency-aware framework that explicitly models and modulates spectral components.<n>FAD consistently outperforms state-of-the-art methods on both seen and unseen domains.
arXiv Detail & Related papers (2025-05-13T08:48:06Z) - LOGLO-FNO: Efficient Learning of Local and Global Features in Fourier Neural Operators [20.77877474840923]
High-frequency information is a critical challenge in machine learning.<n>Deep neural nets exhibit the so-called spectral bias toward learning low-frequency components.<n>We propose a novel frequency-sensitive loss term based on radially binned spectral errors.
arXiv Detail & Related papers (2025-04-05T19:35:04Z) - FE-UNet: Frequency Domain Enhanced U-Net with Segment Anything Capability for Versatile Image Segmentation [50.9040167152168]
We experimentally quantify the contrast sensitivity function of CNNs and compare it with that of the human visual system.<n>We propose the Wavelet-Guided Spectral Pooling Module (WSPM) to enhance and balance image features across the frequency domain.<n>To further emulate the human visual system, we introduce the Frequency Domain Enhanced Receptive Field Block (FE-RFB)<n>We develop FE-UNet, a model that utilizes SAM2 as its backbone and incorporates Hiera-Large as a pre-trained block.
arXiv Detail & Related papers (2025-02-06T07:24:34Z) - Spatial-Frequency Dual Progressive Attention Network For Medical Image Segmentation [11.60636221012585]
In medical images, various types of lesions often manifest significant differences in their shape and texture.
Accurate medical image segmentation demands deep learning models with robust capabilities in multi-scale and boundary feature learning.
We introduce SF-UNet, a spatial-frequency dual-domain attention network.
It comprises two main components: the Multi-scale Progressive Channel Attention (MPCA) block, which progressively extract multi-scale features across adjacent encoder layers, and the lightweight Frequency-Spatial Attention (FSA) block, with only 0.05M parameters.
arXiv Detail & Related papers (2024-06-12T07:22:05Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - Misalignment-Robust Frequency Distribution Loss for Image Transformation [51.0462138717502]
This paper aims to address a common challenge in deep learning-based image transformation methods, such as image enhancement and super-resolution.
We introduce a novel and simple Frequency Distribution Loss (FDL) for computing distribution distance within the frequency domain.
Our method is empirically proven effective as a training constraint due to the thoughtful utilization of global information in the frequency domain.
arXiv Detail & Related papers (2024-02-28T09:27:41Z) - Adaptive Frequency Learning in Two-branch Face Forgery Detection [66.91715092251258]
We propose Adaptively learn Frequency information in the two-branch Detection framework, dubbed AFD.
We liberate our network from the fixed frequency transforms, and achieve better performance with our data- and task-dependent transform layers.
arXiv Detail & Related papers (2022-03-27T14:25:52Z) - Deep Frequency Filtering for Domain Generalization [55.66498461438285]
Deep Neural Networks (DNNs) have preferences for some frequency components in the learning process.
We propose Deep Frequency Filtering (DFF) for learning domain-generalizable features.
We show that applying our proposed DFF on a plain baseline outperforms the state-of-the-art methods on different domain generalization tasks.
arXiv Detail & Related papers (2022-03-23T05:19:06Z) - Frequency-aware Discriminative Feature Learning Supervised by
Single-Center Loss for Face Forgery Detection [89.43987367139724]
Face forgery detection is raising ever-increasing interest in computer vision.
Recent works have reached sound achievements, but there are still unignorable problems.
A novel frequency-aware discriminative feature learning framework is proposed in this paper.
arXiv Detail & Related papers (2021-03-16T14:17:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.