論文の概要: CoMoE: Contrastive Representation for Mixture-of-Experts in Parameter-Efficient Fine-tuning
- arxiv url: http://arxiv.org/abs/2505.17553v1
- Date: Fri, 23 May 2025 06:58:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:33.88572
- Title: CoMoE: Contrastive Representation for Mixture-of-Experts in Parameter-Efficient Fine-tuning
- Title(参考訳): CoMoE:パラメータ効率のよいファインタニングにおけるMixture-of-Expertのコントラスト表現
- Authors: Jinyuan Feng, Chaopeng Wei, Tenghai Qiu, Tianyi Hu, Zhiqiang Pu,
- Abstract要約: 我々は,MoEのモジュール化と特殊化を促進するために,MoE(CoMoE)のコントラスト表現を提案する。
いくつかのベンチマークやマルチタスク環境での実験では、CoMoEはMoEのキャパシティを継続的に向上し、専門家間のモジュール化を促進することができる。
- 参考スコア(独自算出の注目度): 5.161314094237747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In parameter-efficient fine-tuning, mixture-of-experts (MoE), which involves specializing functionalities into different experts and sparsely activating them appropriately, has been widely adopted as a promising approach to trade-off between model capacity and computation overhead. However, current MoE variants fall short on heterogeneous datasets, ignoring the fact that experts may learn similar knowledge, resulting in the underutilization of MoE's capacity. In this paper, we propose Contrastive Representation for MoE (CoMoE), a novel method to promote modularization and specialization in MoE, where the experts are trained along with a contrastive objective by sampling from activated and inactivated experts in top-k routing. We demonstrate that such a contrastive objective recovers the mutual-information gap between inputs and the two types of experts. Experiments on several benchmarks and in multi-task settings demonstrate that CoMoE can consistently enhance MoE's capacity and promote modularization among the experts.
- Abstract(参考訳): パラメータ効率のよい微調整では、異なる専門家に関数を特殊化し、それらを適切に活性化するMix-of-experts (MoE) が、モデルキャパシティと計算オーバーヘッドの間のトレードオフのための有望なアプローチとして広く採用されている。
しかし、現在のMoE変種は異種データセットでは不足しており、専門家が類似した知識を習得できるという事実を無視し、その結果、MoEの能力の未利用化につながっている。
本稿では,MoEのモジュール化と特殊化を促進する手法であるCoMoE(Contrastive Representation for MoE)を提案する。
このような対照的な目的が入力と2種類の専門家の相互情報ギャップを回復させることを示す。
いくつかのベンチマークやマルチタスク環境での実験では、CoMoEはMoEのキャパシティを継続的に向上し、専門家間のモジュール化を促進することができる。
関連論文リスト
- OMoE: Diversifying Mixture of Low-Rank Adaptation by Orthogonal Finetuning [3.8813502422318127]
低ランク適応(LoRA)のためのMixix-of-experts(MoE)アーキテクチャは、パラメータ効率の微調整(PEFT)における潜在的方向として出現している。
まず,バニラMoEの類似表現に専門家が崩壊し,モジュール設計の能力と計算効率が制限されることを示す定性解析を行った。
これらの知見に触発されて、直交混合(OMoE)を提案する。
提案手法は,バニラMOEモデルと比較して最小限の専門家を惹起するため,メモリボトルネックを緩和する。
論文 参考訳(メタデータ) (2025-01-17T09:27:08Z) - HMoE: Heterogeneous Mixture of Experts for Language Modeling [45.65121689677227]
伝統的に、Mixture of Experts (MoE)モデルは同一容量の均一なエキスパートを使用する。
本稿では,HMOE(Heterogeneous Mixture of Experts)を提案する。
HMoEは、活性化パラメータを少なくして低い損失を達成し、様々な事前学習評価ベンチマークにおいて、従来の均質なMoEモデルより優れる。
論文 参考訳(メタデータ) (2024-08-20T09:35:24Z) - Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts [75.85448576746373]
本稿では,モデルのパラメータ効率を向上させるために,類似の専門家をグループ化し,グループ化する方法を提案する。
提案手法の有効性を3つの最先端MoEアーキテクチャを用いて検証する。
評価の結果,本手法は自然言語タスクにおいて,他のモデルプルーニング手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-07-12T17:25:02Z) - HyperMoE: Towards Better Mixture of Experts via Transferring Among Experts [25.504602853436047]
言語モデルのMixture of Experts (MoE)は、各入力トークンを特定の専門家のサブセットに動的にルーティングすることで、モデルのキャパシティを増大させる効果が証明されている。
我々はHypernetworks上に構築された新しいMoEフレームワークであるHyperMoEを提案する。
このフレームワークは、マルチタスク学習における知識伝達の概念とMoEの計算処理を統合する。
論文 参考訳(メタデータ) (2024-02-20T02:09:55Z) - Diversifying the Mixture-of-Experts Representation for Language Models with Orthogonal Optimizer [59.43462055143123]
The Mixture of Experts (MoE)は、ディープラーニングにおいて非常に成功したテクニックとして登場した。
本研究では,MoEの専門家が多様性の専門化や欠如に失敗した同質表現問題に光を当てた。
我々は,各専門家が他の専門家に分散された部分空間への方向を更新するように促す訓練戦略を交互に提案する。
論文 参考訳(メタデータ) (2023-10-15T07:20:28Z) - MoEC: Mixture of Expert Clusters [93.63738535295866]
Sparsely Mixture of Experts (MoE)は、安価な計算オーバーヘッドを持つ有望なスケーリング能力のため、大きな関心を集めている。
MoEは密度の高い層をスパースの専門家に変換し、ゲートルーティングネットワークを使用して専門家を条件付きで活性化させる。
しかし、専門家の数が増加するにつれて、乱雑なパラメータを持つMoEはデータアロケーションの過度な調整とスパースに悩まされる。
論文 参考訳(メタデータ) (2022-07-19T06:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。