論文の概要: Causal Spatio-Temporal Prediction: An Effective and Efficient Multi-Modal Approach
- arxiv url: http://arxiv.org/abs/2505.17637v1
- Date: Fri, 23 May 2025 08:58:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:33.938585
- Title: Causal Spatio-Temporal Prediction: An Effective and Efficient Multi-Modal Approach
- Title(参考訳): Causal Spatio-Temporal Prediction: 効果的かつ効率的なマルチモーダルアプローチ
- Authors: Yuting Huang, Ziquan Fang, Zhihao Zeng, Lu Chen, Yunjun Gao,
- Abstract要約: E2-STPはマルチモーダルデータを統合するための効率的なフレームワークである。
E2-STPは9つの最先端技術よりも優れ、9.66%の精度向上を実現している。
- 参考スコア(独自算出の注目度): 24.359053901146623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatio-temporal prediction plays a crucial role in intelligent transportation, weather forecasting, and urban planning. While integrating multi-modal data has shown potential for enhancing prediction accuracy, key challenges persist: (i) inadequate fusion of multi-modal information, (ii) confounding factors that obscure causal relations, and (iii) high computational complexity of prediction models. To address these challenges, we propose E^2-CSTP, an Effective and Efficient Causal multi-modal Spatio-Temporal Prediction framework. E^2-CSTP leverages cross-modal attention and gating mechanisms to effectively integrate multi-modal data. Building on this, we design a dual-branch causal inference approach: the primary branch focuses on spatio-temporal prediction, while the auxiliary branch mitigates bias by modeling additional modalities and applying causal interventions to uncover true causal dependencies. To improve model efficiency, we integrate GCN with the Mamba architecture for accelerated spatio-temporal encoding. Extensive experiments on 4 real-world datasets show that E^2-CSTP significantly outperforms 9 state-of-the-art methods, achieving up to 9.66% improvements in accuracy as well as 17.37%-56.11% reductions in computational overhead.
- Abstract(参考訳): 時空間予測は、インテリジェント輸送、天気予報、都市計画において重要な役割を果たす。
マルチモーダルデータの統合は予測精度を高める可能性を示しているが、重要な課題は続く。
(i)マルチモーダル情報の不十分な融合
二 因果関係を曖昧にする要因、及び
(三)予測モデルの計算複雑性が高いこと。
これらの課題に対処するため,E^2-CSTPを提案する。
E^2-CSTPは、マルチモーダルデータを効果的に統合するために、クロスモーダルアテンションとゲーティング機構を利用する。
一次分岐は時空間予測に焦点をあて、補助分岐は追加のモダリティをモデル化してバイアスを緩和し、因果関係を明らかにするために因果介入を適用する。
モデル効率を向上させるため,GCNとMambaアーキテクチャを統合し,時空間符号化を高速化する。
4つの実世界のデータセットに対する大規模な実験により、E^2-CSTPは9つの最先端の手法を著しく上回り、9.66%の精度の向上と17.37%-56.11%の計算オーバーヘッドの削減を達成した。
関連論文リスト
- Beyond Patterns: Harnessing Causal Logic for Autonomous Driving Trajectory Prediction [10.21659221112514]
本稿では、因果推論を利用して予測堅牢性、一般化、精度を向上させる新しい軌道予測フレームワークを提案する。
本研究は、軌跡予測の因果推論の可能性を強調し、ロバストな自律運転システムへの道を開くものである。
論文 参考訳(メタデータ) (2025-05-11T05:56:07Z) - Precipitation Nowcasting Using Diffusion Transformer with Causal Attention [3.9468501770612576]
現在のディープラーニング手法は、条件と予測結果の効果的な依存関係を確立するのに不足している。
因果アテンションモデルを用いた拡散変圧器を用いた降雨キャスティングを提案する。
論文 参考訳(メタデータ) (2024-10-17T08:10:41Z) - Cumulative Distribution Function based General Temporal Point Processes [49.758080415846884]
CuFunモデルは、累積分布関数(CDF)を中心に回転するTPPに対する新しいアプローチを表す
提案手法は従来のTPPモデリングに固有のいくつかの重要な問題に対処する。
コントリビューションには、先駆的なCDFベースのTPPモデルの導入、過去の事象情報を将来の事象予測に組み込む方法論の開発が含まれている。
論文 参考訳(メタデータ) (2024-02-01T07:21:30Z) - Perceiver-based CDF Modeling for Time Series Forecasting [25.26713741799865]
本稿では,時系列データの累積分布関数(CDF)をモデル化するための新しいアーキテクチャであるPerceiver-CDFを提案する。
提案手法は,マルチモーダル時系列予測に適したコプラに基づくアテンション機構と,知覚アーキテクチャを組み合わせたものである。
単調かつマルチモーダルなベンチマークの実験は、最先端の手法よりも20%改善されていることを一貫して示している。
論文 参考訳(メタデータ) (2023-10-03T01:13:17Z) - IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint
Multi-Agent Trajectory Prediction [73.25645602768158]
IPCC-TPはインクリメンタルピアソン相関係数に基づく新しい関連認識モジュールであり,マルチエージェントインタラクションモデリングを改善する。
我々のモジュールは、既存のマルチエージェント予測手法に便利に組み込んで、元の動き分布デコーダを拡張することができる。
論文 参考訳(メタデータ) (2023-03-01T15:16:56Z) - Collaborative Uncertainty Benefits Multi-Agent Multi-Modal Trajectory Forecasting [61.02295959343446]
この研究はまず、相互作用モジュールから生じる不確実性をモデル化する新しい概念であるコラボレーティブ不確実性(CU)を提案する。
我々は、回帰と不確実性推定の両方を行うために、元の置換同変不確かさ推定器を備えた一般的なCU対応回帰フレームワークを構築した。
提案するフレームワークを,プラグインモジュールとして現在のSOTAマルチエージェント軌道予測システムに適用する。
論文 参考訳(メタデータ) (2022-07-11T21:17:41Z) - On Efficient Uncertainty Estimation for Resource-Constrained Mobile
Applications [0.0]
予測の不確実性は、モデル予測を補完し、下流タスクの機能を改善します。
Axolotlフレームワークを用いてモンテカルロ・ドロップアウト(MCDO)モデルを構築することでこの問題に対処する。
我々は,(1)CIFAR10データセットを用いた多クラス分類タスク,(2)より複雑な人体セグメンテーションタスクについて実験を行った。
論文 参考訳(メタデータ) (2021-11-11T22:24:15Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) は、2対のモダリティ表現で融合を行う新しいエンドツーエンドネットワークである。
モデルは、モダリティ間の既知の情報不均衡により、2つのバイモーダルペアを入力として取る。
論文 参考訳(メタデータ) (2021-07-28T23:33:42Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。