論文の概要: Bridging Electronic Health Records and Clinical Texts: Contrastive Learning for Enhanced Clinical Tasks
- arxiv url: http://arxiv.org/abs/2505.17643v1
- Date: Fri, 23 May 2025 09:04:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:33.944565
- Title: Bridging Electronic Health Records and Clinical Texts: Contrastive Learning for Enhanced Clinical Tasks
- Title(参考訳): 電子カルテと臨床テキストのブリッジング:臨床業務の強化に向けたコントラストラーニング
- Authors: Sara Ketabi, Dhanesh Ramachandram,
- Abstract要約: 本稿では,構造化EHRデータの潜在表現を非構造化放電要約ノートと整合させるフレームワークを提案する。
ペアのEHRとテキストの埋め込みをまとめて、障害のないものを分解する。
その結果,臨床ノートからEHRベースのパイプラインにドメイン知識を統合する効果が示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional machine learning models, particularly tree-based approaches, have demonstrated promising performance across various clinical prediction tasks using electronic health record (EHR) data. Despite their strengths, these models struggle with tasks that require deeper contextual understanding, such as predicting 30-day hospital readmission. This can be primarily due to the limited semantic information available in structured EHR data. To address this limitation, we propose a deep multimodal contrastive learning (CL) framework that aligns the latent representations of structured EHR data with unstructured discharge summary notes. It works by pulling together paired EHR and text embeddings while pushing apart unpaired ones. Fine-tuning the pretrained EHR encoder extracted from this framework significantly boosts downstream task performance, e.g., a 4.1% AUROC enhancement over XGBoost for 30-day readmission prediction. Such results demonstrate the effect of integrating domain knowledge from clinical notes into EHR-based pipelines, enabling more accurate and context-aware clinical decision support systems.
- Abstract(参考訳): 従来の機械学習モデル、特に木に基づくアプローチは、電子健康記録(EHR)データを用いて、様々な臨床予測タスクで有望なパフォーマンスを示す。
彼らの強みにもかかわらず、これらのモデルは30日間の入院許可の予測など、より深い文脈理解を必要とするタスクに苦しむ。
これは主に、構造化されたEHRデータで利用可能な限られた意味情報のためである。
この制限に対処するために、構造化EHRデータの潜在表現を非構造化放電要約ノートに整合させる深層マルチモーダルコントラスト学習(CL)フレームワークを提案する。
ペアのEHRとテキストの埋め込みをまとめて、障害のないものを分解する。
このフレームワークから抽出した事前訓練されたEHRエンコーダの微調整は、30日間の読み出し予測のためにXGBoostに対する4.1%のAUROC強化などのダウンストリームタスク性能を著しく向上させる。
このような結果は,臨床ノートからEHRに基づくパイプラインにドメイン知識を統合することによって,より正確かつコンテキストに配慮した臨床意思決定支援システムを実現する効果を示す。
関連論文リスト
- Enhancing In-Hospital Mortality Prediction Using Multi-Representational Learning with LLM-Generated Expert Summaries [3.5508427067904864]
ICU患者の院内死亡率(IHM)予測は、時間的介入と効率的な資源配分に重要である。
本研究は、構造化された生理データと臨床ノートをLarge Language Model(LLM)によって生成された専門家要約と統合し、IHM予測精度を向上させる。
論文 参考訳(メタデータ) (2024-11-25T16:36:38Z) - EMERGE: Enhancing Multimodal Electronic Health Records Predictive Modeling with Retrieval-Augmented Generation [22.94521527609479]
EMERGEはRetrieval-Augmented Generation(RAG)駆動のフレームワークであり、マルチモーダルEHR予測モデリングを強化する。
時系列データと臨床ノートからエンティティを抽出し,LLM(Large Language Models)を誘導し,プロのPrimeKGと整合させる。
抽出した知識は、患者の健康状態のタスク関連サマリーを生成するために使用される。
論文 参考訳(メタデータ) (2024-05-27T10:53:15Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - P-Transformer: A Prompt-based Multimodal Transformer Architecture For Medical Tabular Data [2.4688646371447898]
医用表データに特化して設計されたマルチモーダルアンダーライントランスフォーマアーキテクチャであるPTransformerを提案する。
このフレームワークは、構造化データと非構造化データの両方から、多彩なモダリティを調和した言語意味空間に効率的にエンコードする。
PTransformerは、RMSE/MAEで10.9%/11.0%、RMSE/MAEで0.5%/2.2%、BACC/AUROCで1.6%/0.8%の改善を実証した。
論文 参考訳(メタデータ) (2023-03-30T14:25:44Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
本稿では,ソフトプロンプトを用いたモデルに依存しないパイプラインを導入し,確率に基づく要約の利点を保ちながら分散を減少させる。
実験結果から,本手法は性能を向上するだけでなく,様々な言語モデルの分散を効果的に抑制することが明らかとなった。
論文 参考訳(メタデータ) (2023-03-23T04:47:46Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
コントラスト学習を用いた医療レポート作成を支援するために,動的構造とノードを持つ知識グラフを提案する。
詳しくは、グラフの基本構造は一般知識から事前構築される。
各イメージ機能は、レポート生成のためにデコーダモジュールに入力する前に、独自の更新グラフに統合される。
論文 参考訳(メタデータ) (2023-03-18T03:53:43Z) - On the Importance of Clinical Notes in Multi-modal Learning for EHR Data [0.0]
電子健康記録データと臨床ノートを併用することにより,患者モニタリングの予測性能が向上することが従来研究で示されている。
EHRデータと臨床ノートを組み合わせることで、最先端のEHRデータモデルよりもパフォーマンスが大幅に向上することを確認した。
次に、臨床医のメモよりも、患者の状態に関するより広い文脈を含むメモのサブセットから、改善がほぼ排他的に生じることを示す分析を行った。
論文 参考訳(メタデータ) (2022-12-06T15:18:57Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
本稿では,患者の電子カルテに人工的な臨床ノートを作成するための新しいデータ拡張手法を提案する。
生成言語モデルGPT-2を微調整し、ラベル付きテキストを元のトレーニングデータで合成する。
今回,最も多い患者,すなわち30日間の寛解率について検討した。
論文 参考訳(メタデータ) (2022-11-13T01:07:23Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。