FutureSightDrive: Thinking Visually with Spatio-Temporal CoT for Autonomous Driving
- URL: http://arxiv.org/abs/2505.17685v1
- Date: Fri, 23 May 2025 09:55:32 GMT
- Title: FutureSightDrive: Thinking Visually with Spatio-Temporal CoT for Autonomous Driving
- Authors: Shuang Zeng, Xinyuan Chang, Mengwei Xie, Xinran Liu, Yifan Bai, Zheng Pan, Mu Xu, Xing Wei,
- Abstract summary: Visual language models (VLMs) have attracted increasing interest in autonomous driving due to their powerful reasoning capabilities.<n>We propose a Co-temporal-T reasoning method that enables models to think visually.
- Score: 16.588458512862932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual language models (VLMs) have attracted increasing interest in autonomous driving due to their powerful reasoning capabilities. However, existing VLMs typically utilize discrete text Chain-of-Thought (CoT) tailored to the current scenario, which essentially represents highly abstract and symbolic compression of visual information, potentially leading to spatio-temporal relationship ambiguity and fine-grained information loss. Is autonomous driving better modeled on real-world simulation and imagination than on pure symbolic logic? In this paper, we propose a spatio-temporal CoT reasoning method that enables models to think visually. First, VLM serves as a world model to generate unified image frame for predicting future world states: where perception results (e.g., lane divider and 3D detection) represent the future spatial relationships, and ordinary future frame represent the temporal evolution relationships. This spatio-temporal CoT then serves as intermediate reasoning steps, enabling the VLM to function as an inverse dynamics model for trajectory planning based on current observations and future predictions. To implement visual generation in VLMs, we propose a unified pretraining paradigm integrating visual generation and understanding, along with a progressive visual CoT enhancing autoregressive image generation. Extensive experimental results demonstrate the effectiveness of the proposed method, advancing autonomous driving towards visual reasoning.
Related papers
- AutoVLA: A Vision-Language-Action Model for End-to-End Autonomous Driving with Adaptive Reasoning and Reinforcement Fine-Tuning [42.409352964719204]
Vision-Language-Action (VLA) models have shown promise for end-to-end autonomous driving.<n>Current VLA models struggle with physically infeasible action outputs, complex model structures, or unnecessarily long reasoning.<n>We propose AutoVLA, a novel VLA model that unifies reasoning and action generation within a single autoregressive generation model.
arXiv Detail & Related papers (2025-06-16T17:58:50Z) - DriveX: Omni Scene Modeling for Learning Generalizable World Knowledge in Autonomous Driving [20.197094443215963]
We present DriveX, a self-supervised world model that learns general scene dynamics and holistic representations from driving videos.<n>DriveX introduces Omni Scene Modeling (OSM), a module that unifies multimodal supervision-3D point cloud forecasting, 2D semantic representation, and image generation.<n>For downstream adaptation, we design Future Spatial Attention (FSA), a unified paradigm that dynamically aggregates features from DriveX's predictions to enhance task-specific inference.
arXiv Detail & Related papers (2025-05-25T17:27:59Z) - CoT-VLA: Visual Chain-of-Thought Reasoning for Vision-Language-Action Models [89.44024245194315]
We introduce a method that incorporates explicit visual chain-of-thought (CoT) reasoning into vision-language-action models (VLAs)<n>We introduce CoT-VLA, a state-of-the-art 7B VLA that can understand and generate visual and action tokens.<n>Our experimental results demonstrate that CoT-VLA achieves strong performance, outperforming the state-of-the-art VLA model by 17% in real-world manipulation tasks and 6% in simulation benchmarks.
arXiv Detail & Related papers (2025-03-27T22:23:04Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling.<n>World models offer high-fidelity representations of the driving environment that integrate multi-sensor data, semantic cues, and temporal dynamics.<n>This paper systematically reviews recent advances in world models for autonomous driving.
arXiv Detail & Related papers (2025-01-20T04:00:02Z) - Multi-scale Temporal Fusion Transformer for Incomplete Vehicle Trajectory Prediction [23.72022120344089]
Motion prediction plays an essential role in autonomous driving systems.
We propose a novel end-to-end framework for incomplete vehicle trajectory prediction.
We evaluate the proposed model on four datasets derived from highway and urban traffic scenarios.
arXiv Detail & Related papers (2024-09-02T02:36:18Z) - BEVWorld: A Multimodal World Simulator for Autonomous Driving via Scene-Level BEV Latents [56.33989853438012]
We propose BEVWorld, a framework that transforms multimodal sensor inputs into a unified and compact Bird's Eye View latent space for holistic environment modeling.<n>The proposed world model consists of two main components: a multi-modal tokenizer and a latent BEV sequence diffusion model.
arXiv Detail & Related papers (2024-07-08T07:26:08Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - GenAD: Generative End-to-End Autonomous Driving [13.332272121018285]
GenAD is a generative framework that casts autonomous driving into a generative modeling problem.
We propose an instance-centric scene tokenizer that first transforms the surrounding scenes into map-aware instance tokens.
We then employ a variational autoencoder to learn the future trajectory distribution in a structural latent space for trajectory prior modeling.
arXiv Detail & Related papers (2024-02-18T08:21:05Z) - Context-Aware Timewise VAEs for Real-Time Vehicle Trajectory Prediction [4.640835690336652]
We present ContextVAE, a context-aware approach for multi-modal vehicle trajectory prediction.
Our approach takes into account both the social features exhibited by agents on the scene and the physical environment constraints.
In all tested datasets, ContextVAE models are fast to train and provide high-quality multi-modal predictions in real-time.
arXiv Detail & Related papers (2023-02-21T18:42:24Z) - ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal
Feature Learning [132.20119288212376]
We propose a spatial-temporal feature learning scheme towards a set of more representative features for perception, prediction and planning tasks simultaneously.
To the best of our knowledge, we are the first to systematically investigate each part of an interpretable end-to-end vision-based autonomous driving system.
arXiv Detail & Related papers (2022-07-15T16:57:43Z) - CARNet: A Dynamic Autoencoder for Learning Latent Dynamics in Autonomous
Driving Tasks [11.489187712465325]
An autonomous driving system should effectively use the information collected from the various sensors in order to form an abstract description of the world.
Deep learning models, such as autoencoders, can be used for that purpose, as they can learn compact latent representations from a stream of incoming data.
This work proposes CARNet, a Combined dynAmic autoencodeR NETwork architecture that utilizes an autoencoder combined with a recurrent neural network to learn the current latent representation.
arXiv Detail & Related papers (2022-05-18T04:15:42Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.