DriveX: Omni Scene Modeling for Learning Generalizable World Knowledge in Autonomous Driving
- URL: http://arxiv.org/abs/2505.19239v1
- Date: Sun, 25 May 2025 17:27:59 GMT
- Title: DriveX: Omni Scene Modeling for Learning Generalizable World Knowledge in Autonomous Driving
- Authors: Chen Shi, Shaoshuai Shi, Kehua Sheng, Bo Zhang, Li Jiang,
- Abstract summary: We present DriveX, a self-supervised world model that learns general scene dynamics and holistic representations from driving videos.<n>DriveX introduces Omni Scene Modeling (OSM), a module that unifies multimodal supervision-3D point cloud forecasting, 2D semantic representation, and image generation.<n>For downstream adaptation, we design Future Spatial Attention (FSA), a unified paradigm that dynamically aggregates features from DriveX's predictions to enhance task-specific inference.
- Score: 20.197094443215963
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven learning has advanced autonomous driving, yet task-specific models struggle with out-of-distribution scenarios due to their narrow optimization objectives and reliance on costly annotated data. We present DriveX, a self-supervised world model that learns generalizable scene dynamics and holistic representations (geometric, semantic, and motion) from large-scale driving videos. DriveX introduces Omni Scene Modeling (OSM), a module that unifies multimodal supervision-3D point cloud forecasting, 2D semantic representation, and image generation-to capture comprehensive scene evolution. To simplify learning complex dynamics, we propose a decoupled latent world modeling strategy that separates world representation learning from future state decoding, augmented by dynamic-aware ray sampling to enhance motion modeling. For downstream adaptation, we design Future Spatial Attention (FSA), a unified paradigm that dynamically aggregates spatiotemporal features from DriveX's predictions to enhance task-specific inference. Extensive experiments demonstrate DriveX's effectiveness: it achieves significant improvements in 3D future point cloud prediction over prior work, while attaining state-of-the-art results on diverse tasks including occupancy prediction, flow estimation, and end-to-end driving. These results validate DriveX's capability as a general-purpose world model, paving the way for robust and unified autonomous driving frameworks.
Related papers
- GeoDrive: 3D Geometry-Informed Driving World Model with Precise Action Control [50.67481583744243]
We introduce GeoDrive, which explicitly integrates robust 3D geometry conditions into driving world models.<n>We propose a dynamic editing module during training to enhance the renderings by editing the positions of the vehicles.<n>Our method significantly outperforms existing models in both action accuracy and 3D spatial awareness.
arXiv Detail & Related papers (2025-05-28T14:46:51Z) - FutureSightDrive: Thinking Visually with Spatio-Temporal CoT for Autonomous Driving [16.588458512862932]
Visual language models (VLMs) have attracted increasing interest in autonomous driving due to their powerful reasoning capabilities.<n>We propose a Co-temporal-T reasoning method that enables models to think visually.
arXiv Detail & Related papers (2025-05-23T09:55:32Z) - OmniDrive: A Holistic Vision-Language Dataset for Autonomous Driving with Counterfactual Reasoning [68.45848423501927]
We propose a holistic vision-language dataset that aligns agent models with 3D driving tasks through counterfactual reasoning.<n>Our approach enhances decision-making by evaluating potential scenarios and their outcomes, similar to human drivers considering alternative actions.
arXiv Detail & Related papers (2025-04-06T03:54:21Z) - DriveGen: Towards Infinite Diverse Traffic Scenarios with Large Models [22.21497010925769]
DriveGen is a novel traffic simulation framework with large models for more diverse traffic generation.<n>DriveGen fully utilizes large models' high-level cognition and reasoning of driving behavior.<n>Our generated scenarios and corner cases have a superior performance compared to state-of-the-art baselines.
arXiv Detail & Related papers (2025-03-04T06:14:21Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling.<n>This paper systematically reviews recent advances in world models for autonomous driving.
arXiv Detail & Related papers (2025-01-20T04:00:02Z) - DrivingGPT: Unifying Driving World Modeling and Planning with Multi-modal Autoregressive Transformers [61.92571851411509]
We introduce a multimodal driving language based on interleaved image and action tokens, and develop DrivingGPT to learn joint world modeling and planning.<n>Our DrivingGPT demonstrates strong performance in both action-conditioned video generation and end-to-end planning, outperforming strong baselines on large-scale nuPlan and NAVSIM benchmarks.
arXiv Detail & Related papers (2024-12-24T18:59:37Z) - VLM-AD: End-to-End Autonomous Driving through Vision-Language Model Supervision [20.43366384946928]
Vision-language models (VLMs) as teachers to enhance training.<n>VLM-AD achieves significant improvements in planning accuracy and reduced collision rates on the nuScenes dataset.
arXiv Detail & Related papers (2024-12-19T01:53:36Z) - DrivingDojo Dataset: Advancing Interactive and Knowledge-Enriched Driving World Model [65.43473733967038]
We introduce DrivingDojo, the first dataset tailor-made for training interactive world models with complex driving dynamics.
Our dataset features video clips with a complete set of driving maneuvers, diverse multi-agent interplay, and rich open-world driving knowledge.
arXiv Detail & Related papers (2024-10-14T17:19:23Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
We look at the application of Multimodal Large Language Models (MLLMs) in autonomous driving.
Despite advances in models like GPT-4o, their performance in complex driving environments remains largely unexplored.
arXiv Detail & Related papers (2024-05-09T17:52:42Z) - DriveWorld: 4D Pre-trained Scene Understanding via World Models for Autonomous Driving [67.46481099962088]
Current vision-centric pre-training typically relies on either 2D or 3D pre-text tasks, overlooking the temporal characteristics of autonomous driving as a 4D scene understanding task.
We introduce emphcentricDriveWorld, which is capable of pre-training from multi-camera driving videos in atemporal fashion.
DriveWorld delivers promising results on various autonomous driving tasks.
arXiv Detail & Related papers (2024-05-07T15:14:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.