Supervised Graph Contrastive Learning for Gene Regulatory Network
- URL: http://arxiv.org/abs/2505.17786v3
- Date: Sat, 19 Jul 2025 21:19:01 GMT
- Title: Supervised Graph Contrastive Learning for Gene Regulatory Network
- Authors: Sho Oshima, Yuji Okamoto, Taisei Tosaki, Ryosuke Kojima, Yasushi Okuno,
- Abstract summary: SupGCL (Supervised Graph Contrastive Learning) is a novel GCL method for Gene Regulatory Networks (GRNs)<n>Our aim is to improve the performance of biological downstream tasks such as patient hazard prediction and disease subtype classification.<n>In all experiments SupGCL achieves better performance than state-of-the-art baselines.
- Score: 4.450613959365281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph representation learning is effective for obtaining a meaningful latent space utilizing the structure of graph data and is widely applied, including biological networks. In particular, Graph Contrastive Learning (GCL) has emerged as a powerful self-supervised method that relies on applying perturbations to graphs for data augmentation. However, when applying existing GCL methods to biological networks such as Gene Regulatory Networks (GRNs), they overlooked meaningful biologically relevant perturbations, e.g., gene knockdowns. In this study, we introduce SupGCL (Supervised Graph Contrastive Learning), a novel GCL method for GRNs that directly incorporates biological perturbations derived from gene knockdown experiments as the supervision. SupGCL mathematically extends existing GCL methods that utilize non-biological perturbations to probabilistic models that introduce actual biological gene perturbation utilizing gene knockdown data. Using the GRN representation obtained by our proposed method, our aim is to improve the performance of biological downstream tasks such as patient hazard prediction and disease subtype classification (graph-level task), and gene function classification (node-level task). We applied SupGCL on real GRN datasets derived from patients with multiple types of cancer, and in all experiments SupGCL achieves better performance than state-of-the-art baselines.
Related papers
- GRAPE: Heterogeneous Graph Representation Learning for Genetic Perturbation with Coding and Non-Coding Biotype [51.58774936662233]
Building gene regulatory networks (GRN) is essential to understand and predict the effects of genetic perturbations.<n>In this work, we leverage pre-trained large language model and DNA sequence model to extract features from gene descriptions and DNA sequence data.<n>We introduce gene biotype information for the first time in genetic perturbation, simulating the distinct roles of genes with different biotypes in regulating cellular processes.
arXiv Detail & Related papers (2025-05-06T03:35:24Z) - Interpretable Neural ODEs for Gene Regulatory Network Discovery under Perturbations [4.34315395377214]
We propose PerturbODE, a novel framework that incorporates biologically informative neural ordinary differential equations (neural ODEs) to model cell state trajectories under perturbations.<n>We demonstrate PerturbODE's efficacy in trajectory prediction and GRN inference across simulated and real over-expression datasets.
arXiv Detail & Related papers (2025-01-05T01:04:23Z) - Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
We introduce an unsupervised method based on a joint of generative training and discriminative training to learn graph structure and representation.<n>We propose an Energy-based Contrastive Learning (ECL) guided Graph Structure Refinement (GSR) framework, denoted as ECL-GSR.<n>ECL-GSR achieves faster training with fewer samples and memories against the leading baseline, highlighting its simplicity and efficiency in downstream tasks.
arXiv Detail & Related papers (2024-12-20T04:05:09Z) - Gene-Level Representation Learning via Interventional Style Transfer in Optical Pooled Screening [3.7038542578642715]
We employ a style-transfer approach to learn gene-level feature representations from images of genetically perturbed cells obtained via Optical pooled screening (OPS)
Our method outperforms widely used engineered features in clustering gene representations according to gene function, demonstrating its utility for uncovering latent biological relationships.
arXiv Detail & Related papers (2024-06-11T22:56:50Z) - Graph Contrastive Learning with Low-Rank Regularization and Low-Rank Attention for Noisy Node Classification [8.905020033545643]
We introduce a robust and innovative node representation learning method named Graph Contrastive Learning with Low-Rank Regularization, or GCL-LRR.<n>GCL-LRR follows a two-stage transductive learning framework for node classification.<n>We present an improved model named GCL-LR-Attention, which incorporates a novel LR-Attention layer into GCL-LRR.
arXiv Detail & Related papers (2024-02-14T22:15:37Z) - Single-Pass Contrastive Learning Can Work for Both Homophilic and
Heterophilic Graph [60.28340453547902]
Graph contrastive learning (GCL) techniques typically require two forward passes for a single instance to construct the contrastive loss.
Existing GCL approaches fail to provide strong performance guarantees.
We implement the Single-Pass Graph Contrastive Learning method (SP-GCL)
Empirically, the features learned by the SP-GCL can match or outperform existing strong baselines with significantly less computational overhead.
arXiv Detail & Related papers (2022-11-20T07:18:56Z) - Granger causal inference on DAGs identifies genomic loci regulating
transcription [77.58911272503771]
GrID-Net is a framework based on graph neural networks with lagged message passing for Granger causal inference on DAG-structured systems.
Our application is the analysis of single-cell multimodal data to identify genomic loci that mediate the regulation of specific genes.
arXiv Detail & Related papers (2022-10-18T21:15:10Z) - Uncovering the Structural Fairness in Graph Contrastive Learning [87.65091052291544]
Graph contrastive learning (GCL) has emerged as a promising self-supervised approach for learning node representations.
We show that representations obtained by GCL methods are already fairer to degree bias than those learned by GCN.
We devise a novel graph augmentation method, called GRAph contrastive learning for DEgree bias (GRADE), which applies different strategies to low- and high-degree nodes.
arXiv Detail & Related papers (2022-10-06T15:58:25Z) - Inference of Regulatory Networks Through Temporally Sparse Data [5.495223636885796]
A major goal in genomics is to properly capture the complex dynamical behaviors of gene regulatory networks (GRNs)
This paper develops a scalable and efficient topology inference for GRNs using Bayesian optimization and kernel-based methods.
arXiv Detail & Related papers (2022-07-21T22:48:12Z) - Adversarial Graph Augmentation to Improve Graph Contrastive Learning [21.54343383921459]
We propose a novel principle, termed adversarial-GCL (AD-GCL), which enables GNNs to avoid capturing redundant information during the training.
We experimentally validate AD-GCL by comparing with the state-of-the-art GCL methods and achieve performance gains of up-to $14%$ in unsupervised, $6%$ in transfer, and $3%$ in semi-supervised learning settings.
arXiv Detail & Related papers (2021-06-10T15:34:26Z) - Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
via Gaussian Processes [144.6048446370369]
Graph convolutional neural networks(GCNs) have recently demonstrated promising results on graph-based semi-supervised classification.
We propose a GP regression model via GCNs(GPGC) for graph-based semi-supervised learning.
We conduct extensive experiments to evaluate GPGC and demonstrate that it outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2020-02-26T10:02:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.