Integrating Counterfactual Simulations with Language Models for Explaining Multi-Agent Behaviour
- URL: http://arxiv.org/abs/2505.17801v1
- Date: Fri, 23 May 2025 12:19:18 GMT
- Title: Integrating Counterfactual Simulations with Language Models for Explaining Multi-Agent Behaviour
- Authors: Bálint Gyevnár, Christopher G. Lucas, Stefano V. Albrecht, Shay B. Cohen,
- Abstract summary: We propose Agentic eXplanations via Interrogative Simulation (AXIS)<n>AXIS generates intelligible causal explanations for pre-trained multi-agent policies.<n>We evaluate AXIS on autonomous driving across 10 scenarios for 5 LLMs.
- Score: 26.04296415316974
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous multi-agent systems (MAS) are useful for automating complex tasks but raise trust concerns due to risks like miscoordination and goal misalignment. Explainability is vital for trust calibration, but explainable reinforcement learning for MAS faces challenges in state/action space complexity, stakeholder needs, and evaluation. Using the counterfactual theory of causation and LLMs' summarisation capabilities, we propose Agentic eXplanations via Interrogative Simulation (AXIS). AXIS generates intelligible causal explanations for pre-trained multi-agent policies by having an LLM interrogate an environment simulator using queries like 'whatif' and 'remove' to observe and synthesise counterfactual information over multiple rounds. We evaluate AXIS on autonomous driving across 10 scenarios for 5 LLMs with a novel evaluation methodology combining subjective preference, correctness, and goal/action prediction metrics, and an external LLM as evaluator. Compared to baselines, AXIS improves perceived explanation correctness by at least 7.7% across all models and goal prediction accuracy by 23% for 4 models, with improved or comparable action prediction accuracy, achieving the highest scores overall.
Related papers
- CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward [50.97588334916863]
We develop CompassVerifier, an accurate and robust lightweight verifier model for evaluation and outcome reward.<n>It demonstrates multi-domain competency spanning math, knowledge, and diverse reasoning tasks, with the capability to process various answer types.<n>We introduce VerifierBench benchmark comprising model outputs collected from multiple data sources, augmented through manual analysis of metaerror patterns to enhance CompassVerifier.
arXiv Detail & Related papers (2025-08-05T17:55:24Z) - AutoJudger: An Agent-Driven Framework for Efficient Benchmarking of MLLMs [24.403284945948272]
AutoJudger is an agent-driven framework for efficient and adaptive benchmarking of multimodal large language models.<n>AutoJudger employs the Item Response Theory (IRT) to estimate the question difficulty and an autonomous evaluation agent to dynamically select the most informative test questions.
arXiv Detail & Related papers (2025-05-27T16:17:15Z) - IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Bench is a novel benchmark evaluating large language models in multi-round interactive scenarios.<n>Agent performance is judged by comparing its final numerical output to the human-derived baseline.<n>Even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on 50% of the tasks, highlighting limitations not evident in single-turn tests.
arXiv Detail & Related papers (2025-05-23T09:37:52Z) - Reinforcing Question Answering Agents with Minimalist Policy Gradient Optimization [80.09112808413133]
Mujica is a planner that decomposes questions into acyclic graph of subquestions and a worker that resolves questions via retrieval and reasoning.<n>MyGO is a novel reinforcement learning method that replaces traditional policy updates with gradient Likelihood Maximum Estimation.<n> Empirical results across multiple datasets demonstrate the effectiveness of MujicaMyGO in enhancing multi-hop QA performance.
arXiv Detail & Related papers (2025-05-20T18:33:03Z) - Meta-Evaluating Local LLMs: Rethinking Performance Metrics for Serious Games [3.725822359130832]
Large Language Models (LLMs) are increasingly being explored as evaluators in serious games.<n>This study investigates the reliability of five small-scale LLMs when assessing player responses in textitEn-join, a game that simulates decision-making within energy communities.<n>Our results highlight the strengths and limitations of each model, revealing trade-offs between sensitivity, specificity, and overall performance.
arXiv Detail & Related papers (2025-04-13T10:46:13Z) - DriveLMM-o1: A Step-by-Step Reasoning Dataset and Large Multimodal Model for Driving Scenario Understanding [76.3876070043663]
We propose DriveLMM-o1, a dataset and benchmark designed to advance step-wise visual reasoning for autonomous driving.<n>Our benchmark features over 18k VQA examples in the training set and more than 4k in the test set, covering diverse questions on perception, prediction, and planning.<n>Our model achieves a +7.49% gain in final answer accuracy, along with a 3.62% improvement in reasoning score over the previous best open-source model.
arXiv Detail & Related papers (2025-03-13T17:59:01Z) - SPARC: Score Prompting and Adaptive Fusion for Zero-Shot Multi-Label Recognition in Vision-Language Models [74.40683913645731]
Zero-shot multi-label recognition (MLR) with Vision-Language Models (VLMs) faces significant challenges without training data, model tuning, or architectural modifications.<n>Our work proposes a novel solution treating VLMs as black boxes, leveraging scores without training data or ground truth.<n>Analysis of these prompt scores reveals VLM biases and AND''/OR' signal ambiguities, notably that maximum scores are surprisingly suboptimal compared to second-highest scores.
arXiv Detail & Related papers (2025-02-24T07:15:05Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - MetaOpenFOAM: an LLM-based multi-agent framework for CFD [11.508919041921942]
MetaOpenFOAM is a novel multi-agent collaborations framework.
It aims to complete CFD simulation tasks with only natural language as input.
It harnesses the power of MetaGPT's assembly line paradigm.
arXiv Detail & Related papers (2024-07-31T04:01:08Z) - MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains [54.117238759317004]
Massive Multitask Agent Understanding (MMAU) benchmark features comprehensive offline tasks that eliminate the need for complex environment setups.
It evaluates models across five domains, including Tool-use, Directed Acyclic Graph (DAG) QA, Data Science and Machine Learning coding, Contest-level programming and Mathematics.
With a total of 20 meticulously designed tasks encompassing over 3K distinct prompts, MMAU provides a comprehensive framework for evaluating the strengths and limitations of LLM agents.
arXiv Detail & Related papers (2024-07-18T00:58:41Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Applied metamodelling for ATM performance simulations [0.0]
XALM (eXplainable Active Learning Metamodel) is a framework integrating active learning and SHAP values into simulation metamodels.
XALM efficiently uncovers hidden relationships among input and output variables in ATM simulators.
Case study shows XALM's effectiveness in enhancing simulation interpretability and understanding variable interactions.
arXiv Detail & Related papers (2023-08-07T08:46:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.