Scalable Valuation of Human Feedback through Provably Robust Model Alignment
- URL: http://arxiv.org/abs/2505.17859v1
- Date: Fri, 23 May 2025 13:12:37 GMT
- Title: Scalable Valuation of Human Feedback through Provably Robust Model Alignment
- Authors: Masahiro Fujisawa, Masaki Adachi, Michael A. Osborne,
- Abstract summary: A robust alignment objective should yield identical model parameters even under severe label noise.<n>We propose H"older-DPO, the first principled alignment loss with a provable redescending property.<n>This metric is gradient-free, enabling scalable and automated human feedback valuation.
- Score: 19.742371911023774
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the importance of aligning language models with human preferences, crowd-sourced human feedback is often noisy -- for example, preferring less desirable responses -- posing a fundamental challenge to alignment. A truly robust alignment objective should yield identical model parameters even under severe label noise, a property known as redescending. We prove that no existing alignment methods satisfy this property. To address this, we propose H\"older-DPO, the first principled alignment loss with a provable redescending property, enabling estimation of the clean data distribution from noisy feedback. The aligned model estimates the likelihood of clean data, providing a theoretically grounded metric for dataset valuation that identifies the location and fraction of mislabels. This metric is gradient-free, enabling scalable and automated human feedback valuation without costly manual verification or clean validation dataset. H\"older-DPO achieves state-of-the-art robust alignment performance while accurately detecting mislabels in controlled datasets. Finally, we apply H\"older-DPO to widely used alignment datasets, revealing substantial noise levels and demonstrating that removing these mislabels significantly improves alignment performance across methods.
Related papers
- Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [63.32585910975191]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.<n>We show that our approach consistently boosts DPO by a considerable margin.<n>Our method not only maximizes the utility of preference data but also mitigates the issue of unlearning, demonstrating its broad effectiveness beyond mere data expansion.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - ROPO: Robust Preference Optimization for Large Language Models [59.10763211091664]
We propose an iterative alignment approach that integrates noise-tolerance and filtering of noisy samples without the aid of external models.
Experiments on three widely-used datasets with Mistral-7B and Llama-2-7B demonstrate that ROPO significantly outperforms existing preference alignment methods.
arXiv Detail & Related papers (2024-04-05T13:58:51Z) - Systematic analysis of the impact of label noise correction on ML
Fairness [0.0]
We develop an empirical methodology to evaluate the effectiveness of label noise correction techniques in ensuring the fairness of models trained on biased datasets.
Our results suggest that the Hybrid Label Noise Correction method achieves the best trade-off between predictive performance and fairness.
arXiv Detail & Related papers (2023-06-28T08:08:14Z) - Guiding Pseudo-labels with Uncertainty Estimation for Test-Time
Adaptation [27.233704767025174]
Test-Time Adaptation (TTA) is a specific case of Unsupervised Domain Adaptation (UDA) where a model is adapted to a target domain without access to source data.
We propose a novel approach for the TTA setting based on a loss reweighting strategy that brings robustness against the noise that inevitably affects the pseudo-labels.
arXiv Detail & Related papers (2023-03-07T10:04:55Z) - Learning with Noisy labels via Self-supervised Adversarial Noisy Masking [33.87292143223425]
We propose a novel training approach termed adversarial noisy masking.
It adaptively modulates the input data and label simultaneously, preventing the model to overfit noisy samples.
It is tested on both synthetic and real-world noisy datasets.
arXiv Detail & Related papers (2023-02-14T03:13:26Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised
Person Re-Identification [80.98291772215154]
Unsupervised person re-identification (ReID) aims at learning discriminative identity features for person retrieval without any annotations.
Recent advances accomplish this task by leveraging clustering-based pseudo labels.
We propose a Neighbour Consistency guided Pseudo Label Refinement framework.
arXiv Detail & Related papers (2022-11-30T09:39:57Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
Learning with noisy labels (LNL) aims at designing strategies to improve model performance and generalization by mitigating the effects of model overfitting to noisy labels.
Recent advances employ the predicted label distributions of individual samples to perform noise verification and noisy label correction, easily giving rise to confirmation bias.
We propose Neighborhood Collective Estimation, in which the predictive reliability of a candidate sample is re-estimated by contrasting it against its feature-space nearest neighbors.
arXiv Detail & Related papers (2022-08-05T14:47:22Z) - Towards Robust Adaptive Object Detection under Noisy Annotations [40.25050610617893]
Existing methods assume that the source domain labels are completely clean, yet large-scale datasets often contain error-prone annotations due to instance ambiguity.
We propose a Noise Latent Transferability Exploration framework to address this issue.
NLTE improves the mAP by 8.4% under 60% corrupted annotations and even approaches the ideal upper bound of training on a clean source dataset.
arXiv Detail & Related papers (2022-04-06T07:02:37Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z) - A Self-Refinement Strategy for Noise Reduction in Grammatical Error
Correction [54.569707226277735]
Existing approaches for grammatical error correction (GEC) rely on supervised learning with manually created GEC datasets.
There is a non-negligible amount of "noise" where errors were inappropriately edited or left uncorrected.
We propose a self-refinement method where the key idea is to denoise these datasets by leveraging the prediction consistency of existing models.
arXiv Detail & Related papers (2020-10-07T04:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.