論文の概要: Toward Optimal ANC: Establishing Mutual Information Lower Bound
- arxiv url: http://arxiv.org/abs/2505.17877v1
- Date: Fri, 23 May 2025 13:27:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:34.106518
- Title: Toward Optimal ANC: Establishing Mutual Information Lower Bound
- Title(参考訳): 最適ANCに向けて:相互情報の低い境界を確立する
- Authors: François Derrida, Shahar Lutati, Eliya Nachmani,
- Abstract要約: アクティブノイズキャンセラアルゴリズムは、元のノイズをリアルタイムに妨害するアンチノイズ信号を生成することにより、望ましくない音響障害を抑制する。
最近のディープラーニングベースのANCアルゴリズムでは、新しいパフォーマンスベンチマークが設定されているが、その改善を厳格に評価する理論的な制限が不足している。
2つのコンポーネントからなるキャンセル性能の統一的な下限を導出する。
- 参考スコア(独自算出の注目度): 17.26187153831657
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active Noise Cancellation (ANC) algorithms aim to suppress unwanted acoustic disturbances by generating anti-noise signals that destructively interfere with the original noise in real time. Although recent deep learning-based ANC algorithms have set new performance benchmarks, there remains a shortage of theoretical limits to rigorously assess their improvements. To address this, we derive a unified lower bound on cancellation performance composed of two components. The first component is information-theoretic: it links residual error power to the fraction of disturbance entropy captured by the anti-noise signal, thereby quantifying limits imposed by information-processing capacity. The second component is support-based: it measures the irreducible error arising in frequency bands that the cancellation path cannot address, reflecting fundamental physical constraints. By taking the maximum of these two terms, our bound establishes a theoretical ceiling on the Normalized Mean Squared Error (NMSE) attainable by any ANC algorithm. We validate its tightness empirically on the NOISEX dataset under varying reverberation times, demonstrating robustness across diverse acoustic conditions.
- Abstract(参考訳): アクティブノイズキャンセレーション(ANC)アルゴリズムは、元のノイズをリアルタイムに破壊的に妨害するアンチノイズ信号を生成することにより、不要な音響障害を抑制することを目的としている。
最近のディープラーニングベースのANCアルゴリズムでは、新しいパフォーマンスベンチマークが設定されているが、その改善を厳格に評価するための理論的制限は、まだ不足している。
これを解決するために、2つのコンポーネントからなるキャンセル性能の統一的な下限を導出する。
第1のコンポーネントは情報理論であり、残差誤差パワーと反雑音信号によって捕捉された乱れエントロピーの分数とをリンクし、情報処理能力によって課される制限を定量化する。
第2のコンポーネントはサポートベースで、キャンセルパスが対応できない周波数帯域で発生する既約誤差を測定し、基本的な物理的制約を反映する。
この2項の最大値を取ることにより、我々は任意のANCアルゴリズムで達成可能な正規化平均正方形誤差(NMSE)の理論的天井を確立する。
異なる残響時間におけるNOISEXデータセットの強靭性を実証的に検証し, 各種音響条件における強靭性を実証した。
関連論文リスト
- Unsupervised CP-UNet Framework for Denoising DAS Data with Decay Noise [13.466125373185399]
分散音響センサ(DAS)技術は光ファイバーケーブルを利用して音響信号を検出する。
DASは、ジオフォンよりも低い信号対雑音比(S/N)を示す。
これにより、S/Nの低減は、反転と解釈を含むデータ解析に悪影響を及ぼす。
論文 参考訳(メタデータ) (2025-02-19T03:09:49Z) - ResFlow: Fine-tuning Residual Optical Flow for Event-based High Temporal Resolution Motion Estimation [50.80115710105251]
イベントカメラは、高時間分解能(HTR)モーション推定に重要な可能性を秘めている。
イベントデータを用いてHTR光流を推定するための残差に基づくパラダイムを提案する。
論文 参考訳(メタデータ) (2024-12-12T09:35:47Z) - DEeR: Deviation Eliminating and Noise Regulating for Privacy-preserving Federated Low-rank Adaptation [29.30782543513243]
我々は、UnderlineDeviation UnderlineEliminatingとNoisunderlinee Underline Regulating (DEeR)と呼ばれるプライバシー保護フェデレーションファインタニングフレームワークを提案する。
DeeRは、最先端のアプローチと比較して、公開医療データセットのパフォーマンスが向上していることを示す。
論文 参考訳(メタデータ) (2024-10-16T18:11:52Z) - Matrix Denoising with Doubly Heteroscedastic Noise: Fundamental Limits and Optimal Spectral Methods [24.06775799553418]
本研究では,列相関と列相関の両方でノイズによって劣化したランク1$の信号の特異ベクトルを推定する行列記述問題について検討する。
本研究は,2つのヘテロセダスティックノイズを重畳した行列の,情報理論的およびアルゴリズム的限界を確立する。
論文 参考訳(メタデータ) (2024-05-22T18:38:10Z) - SoftPatch: Unsupervised Anomaly Detection with Noisy Data [67.38948127630644]
本稿では,画像センサ異常検出におけるラベルレベルのノイズを初めて考察する。
本稿では,メモリベースの非教師付きAD手法であるSoftPatchを提案する。
既存の手法と比較して、SoftPatchは通常のデータの強力なモデリング能力を維持し、コアセットにおける過信問題を軽減する。
論文 参考訳(メタデータ) (2024-03-21T08:49:34Z) - Label Noise: Correcting the Forward-Correction [0.0]
ラベルノイズのあるデータセット上でニューラルネットワーク分類器を訓練することは、ノイズのあるラベルに過度に適合するリスクをもたらす。
ラベルノイズによる過度適合に対処する手法を提案する。
本研究は, オーバーフィッティングを緩和するために, トレーニング損失に低い限界を課すことを提案する。
論文 参考訳(メタデータ) (2023-07-24T19:41:19Z) - DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly Detection [80.20339155618612]
DiffusionADは、再構成サブネットワークとセグメンテーションサブネットワークからなる、新しい異常検出パイプラインである。
高速なワンステップデノゲーションパラダイムは、同等の再現品質を維持しながら、数百倍の加速を達成する。
異常の出現の多様性を考慮し、複数のノイズスケールの利点を統合するためのノルム誘導パラダイムを提案する。
論文 参考訳(メタデータ) (2023-03-15T16:14:06Z) - Latent Class-Conditional Noise Model [54.56899309997246]
本稿では,ベイズ的枠組みの下での雑音遷移をパラメータ化するためのLatent Class-Conditional Noise Model (LCCN)を提案する。
次に、Gibs sampler を用いて遅延真のラベルを効率的に推測できる LCCN の動的ラベル回帰法を導出する。
提案手法は,サンプルのミニバッチから事前の任意チューニングを回避するため,ノイズ遷移の安定な更新を保護している。
論文 参考訳(メタデータ) (2023-02-19T15:24:37Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
この劣化を逆転させるために、低オーバーヘッドプロトコルを導入します。
振幅減衰雑音に対する非単位確率フィルタの実装のための2つのトラップイオンスキームを提案する。
このフィルタは、単一コピー準蒸留のためのプロトコルとして理解することができる。
論文 参考訳(メタデータ) (2022-09-06T18:18:41Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
実効多部絡み(GME)認証のための条件付き目撃手法を導入する。
線形な二分割数における絡み合いの検出は, 多数の測定値によって線形にスケールし, GMEの認証に十分であることを示す。
本手法は, 距離3の位相的カラーコードとフラグベースの耐故障バージョンにおける安定化作用素の雑音可読化に適用する。
論文 参考訳(メタデータ) (2020-10-06T18:00:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。