論文の概要: NeuroTrails: Training with Dynamic Sparse Heads as the Key to Effective Ensembling
- arxiv url: http://arxiv.org/abs/2505.17909v1
- Date: Fri, 23 May 2025 13:53:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:34.122351
- Title: NeuroTrails: Training with Dynamic Sparse Heads as the Key to Effective Ensembling
- Title(参考訳): NeuroTrails: 効果的な組み立ての鍵となるダイナミックスパースヘッドによるトレーニング
- Authors: Bram Grooten, Farid Hasanov, Chenxiang Zhang, Qiao Xiao, Boqian Wu, Zahra Atashgahi, Ghada Sokar, Shiwei Liu, Lu Yin, Elena Mocanu, Mykola Pechenizkiy, Decebal Constantin Mocanu,
- Abstract要約: 動的に進化するトポロジを持つスパースなマルチヘッドアーキテクチャであるtextbfNeuroTrails$を紹介した。
NeuroTrailsはコンピュータビジョンと言語タスクの畳み込みとトランスフォーマーベースのアーキテクチャで有効性を示す。
- 参考スコア(独自算出の注目度): 35.837527844931266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model ensembles have long been a cornerstone for improving generalization and robustness in deep learning. However, their effectiveness often comes at the cost of substantial computational overhead. To address this issue, state-of-the-art methods aim to replicate ensemble-class performance without requiring multiple independently trained networks. Unfortunately, these algorithms often still demand considerable compute at inference. In response to these limitations, we introduce $\textbf{NeuroTrails}$, a sparse multi-head architecture with dynamically evolving topology. This unexplored model-agnostic training paradigm improves ensemble performance while reducing the required resources. We analyze the underlying reason for its effectiveness and observe that the various neural trails induced by dynamic sparsity attain a $\textit{Goldilocks zone}$ of prediction diversity. NeuroTrails displays efficacy with convolutional and transformer-based architectures on computer vision and language tasks. Experiments on ResNet-50/ImageNet, LLaMA-350M/C4, among many others, demonstrate increased accuracy and stronger robustness in zero-shot generalization, while requiring significantly fewer parameters.
- Abstract(参考訳): モデルアンサンブルは、ディープラーニングにおける一般化と堅牢性を改善するための基盤として長い間使われてきた。
しかし、その効果はしばしば計算オーバーヘッドのかなりのコストがかかる。
この問題に対処するために、最先端の手法は、複数の独立して訓練されたネットワークを必要とすることなく、アンサンブルクラスのパフォーマンスを再現することを目的としている。
残念ながら、これらのアルゴリズムは推論時にかなりの計算を必要とすることが多い。
これらの制限に対応するために、動的に進化するトポロジを持つスパースマルチヘッドアーキテクチャである$\textbf{NeuroTrails}$を導入する。
この探索されていないモデルに依存しないトレーニングパラダイムは、必要なリソースを削減しつつ、アンサンブルのパフォーマンスを改善する。
我々は、その効果の根底にある理由を分析し、動的間隔によって誘導される様々な神経経路が、予測多様性の$$\textit{Goldilocks zone}に達することを観察する。
NeuroTrailsはコンピュータビジョンと言語タスクの畳み込みとトランスフォーマーベースのアーキテクチャで有効性を示す。
ResNet-50/ImageNet、LLaMA-350M/C4などの実験では、ゼロショットの一般化では精度が向上し、強靭性が向上する一方で、パラメータは大幅に少なかった。
関連論文リスト
- Global Convergence and Rich Feature Learning in $L$-Layer Infinite-Width Neural Networks under $μ$P Parametrization [66.03821840425539]
本稿では, テンソル勾配プログラム(SGD)フレームワークを用いた$L$層ニューラルネットワークのトレーニング力学について検討する。
SGDにより、これらのネットワークが初期値から大きく逸脱する線形独立な特徴を学習できることを示す。
このリッチな特徴空間は、関連するデータ情報をキャプチャし、トレーニングプロセスの収束点が世界最小であることを保証する。
論文 参考訳(メタデータ) (2025-03-12T17:33:13Z) - NeuroPrune: A Neuro-inspired Topological Sparse Training Algorithm for Large Language Models [35.10729451729596]
自然言語処理(NLP)におけるトランスフォーマーベース言語モデルの普及
しかし、高価なトレーニングや推論は、その適用性に重大な障害となる。
脳神経ネットワークにインスパイアされた我々は、ネットワークトポロジーのレンズを通してスパーシティアプローチを探索する。
論文 参考訳(メタデータ) (2024-02-28T22:21:47Z) - Model-Based Control with Sparse Neural Dynamics [23.961218902837807]
モデル学習と予測制御を統合した新しいフレームワークを提案する。
我々は,既存の最先端手法よりもクローズドループ性能を向上できることを示す。
論文 参考訳(メタデータ) (2023-12-20T06:25:02Z) - Activity Sparsity Complements Weight Sparsity for Efficient RNN Inference [2.5148788595166205]
本研究では、繰り返しニューラルネットワークモデルにおいて、活動空間がパラメータ空間と乗算的に構成可能であることを示す。
私たちはPenn Treebank言語モデリングタスクで60ドル以下の難易度を維持しながら、最大20ドルまで計算の削減を実現しています。
論文 参考訳(メタデータ) (2023-11-13T08:18:44Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
大規模空間問題に対する学習効率を向上させるために移動学習を用いる。
畳み込みニューラルネットワーク (CNN) は, 信号の小さな窓で訓練できるが, 性能劣化の少ない任意の大信号で評価できる。
論文 参考訳(メタデータ) (2023-06-14T01:24:42Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
我々は、本質的にスパースモデルにつながるニューラルネットワークの新しい重みパラメータ化であるPowerpropagationを紹介した。
この方法で訓練されたモデルは同様の性能を示すが、0で明らかに高い密度の分布を持ち、より多くのパラメータを安全に刈り取ることができる。
ここでは、Powerpropagationと従来のウェイトプルーニング技術と、最近の最先端スパース・トゥ・スパースアルゴリズムを組み合わせることで、ImageNetベンチマークで優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-10-01T10:03:57Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via
Adversarial Fine-tuning [90.44219200633286]
我々は,$textitslow start, fast decay$ learning rate schedulingストラテジーに基づく,単純かつ非常に効果的な敵の微調整手法を提案する。
実験の結果,提案手法はCIFAR-10, CIFAR-100, ImageNetデータセットの最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-25T20:50:15Z) - Computation on Sparse Neural Networks: an Inspiration for Future
Hardware [20.131626638342706]
スパースニューラルネットワークの計算に関する研究の現状について述べる。
本稿では,重みパラメータの数とモデル構造に影響されるモデルの精度について論じる。
実際に複雑な問題に対して、重みが支配する領域において、大小のモデルを探索することはより有益であることを示す。
論文 参考訳(メタデータ) (2020-04-24T19:13:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。