To Glue or Not to Glue? Classical vs Learned Image Matching for Mobile Mapping Cameras to Textured Semantic 3D Building Models
- URL: http://arxiv.org/abs/2505.17973v1
- Date: Fri, 23 May 2025 14:41:41 GMT
- Title: To Glue or Not to Glue? Classical vs Learned Image Matching for Mobile Mapping Cameras to Textured Semantic 3D Building Models
- Authors: Simone Gaisbauer, Prabin Gyawali, Qilin Zhang, Olaf Wysocki, Boris Jutzi,
- Abstract summary: This work systematically evaluates the effectiveness of different feature-matching techniques in visual localization using textured CityGML LoD2 models.<n>The results indicate that the learnable feature matching methods vastly outperform traditional approaches regarding accuracy and robustness.
- Score: 5.4693951128908935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feature matching is a necessary step for many computer vision and photogrammetry applications such as image registration, structure-from-motion, and visual localization. Classical handcrafted methods such as SIFT feature detection and description combined with nearest neighbour matching and RANSAC outlier removal have been state-of-the-art for mobile mapping cameras. With recent advances in deep learning, learnable methods have been introduced and proven to have better robustness and performance under complex conditions. Despite their growing adoption, a comprehensive comparison between classical and learnable feature matching methods for the specific task of semantic 3D building camera-to-model matching is still missing. This submission systematically evaluates the effectiveness of different feature-matching techniques in visual localization using textured CityGML LoD2 models. We use standard benchmark datasets (HPatches, MegaDepth-1500) and custom datasets consisting of facade textures and corresponding camera images (terrestrial and drone). For the latter, we evaluate the achievable accuracy of the absolute pose estimated using a Perspective-n-Point (PnP) algorithm, with geometric ground truth derived from geo-referenced trajectory data. The results indicate that the learnable feature matching methods vastly outperform traditional approaches regarding accuracy and robustness on our challenging custom datasets with zero to 12 RANSAC-inliers and zero to 0.16 area under the curve. We believe that this work will foster the development of model-based visual localization methods. Link to the code: https://github.com/simBauer/To\_Glue\_or\_not\_to\_Glue
Related papers
- A Guide to Structureless Visual Localization [63.41481414949785]
Methods that estimate the camera pose of a query image in a known scene are core components of many applications, including self-driving cars and augmented / mixed reality systems.<n>State-of-the-art visual localization algorithms are structure-based, i.e., they store a 3D model of the scene and use 2D-3D correspondences between the query image and 3D points in the model for camera pose estimation.<n>This paper is dedicated to providing, to the best of our knowledge, first comprehensive discussion and comparison of structureless methods.
arXiv Detail & Related papers (2025-04-24T15:08:36Z) - No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplat is a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from multi-view images.
Our model achieves real-time 3D Gaussian reconstruction during inference.
This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios.
arXiv Detail & Related papers (2024-10-31T17:58:22Z) - GeoCalib: Learning Single-image Calibration with Geometric Optimization [89.84142934465685]
From a single image, visual cues can help deduce intrinsic and extrinsic camera parameters like the focal length and the gravity direction.
Current approaches to this problem are based on either classical geometry with lines and vanishing points or on deep neural networks trained end-to-end.
We introduce GeoCalib, a deep neural network that leverages universal rules of 3D geometry through an optimization process.
arXiv Detail & Related papers (2024-09-10T17:59:55Z) - Neural Semantic Surface Maps [52.61017226479506]
We present an automated technique for computing a map between two genus-zero shapes, which matches semantically corresponding regions to one another.
Our approach can generate semantic surface-to-surface maps, eliminating manual annotations or any 3D training data requirement.
arXiv Detail & Related papers (2023-09-09T16:21:56Z) - LFM-3D: Learnable Feature Matching Across Wide Baselines Using 3D
Signals [9.201550006194994]
Learnable matchers often underperform when there exists only small regions of co-visibility between image pairs.
We propose LFM-3D, a Learnable Feature Matching framework that uses models based on graph neural networks.
We show that the resulting improved correspondences lead to much higher relative posing accuracy for in-the-wild image pairs.
arXiv Detail & Related papers (2023-03-22T17:46:27Z) - Learning to Detect Good Keypoints to Match Non-Rigid Objects in RGB
Images [7.428474910083337]
We present a novel learned keypoint detection method designed to maximize the number of correct matches for the task of non-rigid image correspondence.
Our training framework uses true correspondences, obtained by matching annotated image pairs with a predefined descriptor extractor, as a ground-truth to train a convolutional neural network (CNN)
Experiments show that our method outperforms the state-of-the-art keypoint detector on real images of non-rigid objects by 20 p.p. on Mean Matching Accuracy.
arXiv Detail & Related papers (2022-12-13T11:59:09Z) - Improving Feature-based Visual Localization by Geometry-Aided Matching [21.1967752160412]
We introduce a novel 2D-3D matching method, Geometry-Aided Matching (GAM), which uses both appearance information and geometric context to improve 2D-3D feature matching.
GAM can greatly strengthen the recall of 2D-3D matches while maintaining high precision.
Our proposed localization method achieves state-of-the-art results on multiple visual localization datasets.
arXiv Detail & Related papers (2022-11-16T07:02:12Z) - Multi-View Object Pose Refinement With Differentiable Renderer [22.040014384283378]
This paper introduces a novel multi-view 6 DoF object pose refinement approach focusing on improving methods trained on synthetic data.
It is based on the DPOD detector, which produces dense 2D-3D correspondences between the model vertices and the image pixels in each frame.
We report excellent performance in comparison to the state-of-the-art methods trained on the synthetic and real data.
arXiv Detail & Related papers (2022-07-06T17:02:22Z) - Soft Expectation and Deep Maximization for Image Feature Detection [68.8204255655161]
We propose SEDM, an iterative semi-supervised learning process that flips the question and first looks for repeatable 3D points, then trains a detector to localize them in image space.
Our results show that this new model trained using SEDM is able to better localize the underlying 3D points in a scene.
arXiv Detail & Related papers (2021-04-21T00:35:32Z) - Graph Sampling Based Deep Metric Learning for Generalizable Person
Re-Identification [114.56752624945142]
We argue that the most popular random sampling method, the well-known PK sampler, is not informative and efficient for deep metric learning.
We propose an efficient mini batch sampling method called Graph Sampling (GS) for large-scale metric learning.
arXiv Detail & Related papers (2021-04-04T06:44:15Z) - Image Matching across Wide Baselines: From Paper to Practice [80.9424750998559]
We introduce a comprehensive benchmark for local features and robust estimation algorithms.
Our pipeline's modular structure allows easy integration, configuration, and combination of different methods.
We show that with proper settings, classical solutions may still outperform the perceived state of the art.
arXiv Detail & Related papers (2020-03-03T15:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.