論文の概要: Clinical Validation of Deep Learning for Real-Time Tissue Oxygenation Estimation Using Spectral Imaging
- arxiv url: http://arxiv.org/abs/2505.18010v1
- Date: Fri, 23 May 2025 15:14:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:34.184784
- Title: Clinical Validation of Deep Learning for Real-Time Tissue Oxygenation Estimation Using Spectral Imaging
- Title(参考訳): 分光画像を用いたリアルタイム組織酸素濃度推定のための深層学習の臨床的検証
- Authors: Jens De Winne, Siri Willems, Siri Luthman, Danilo Babin, Hiep Luong, Wim Ceelen,
- Abstract要約: モンテカルロ模擬スペクトルを用いたリアルタイム組織酸素化推定のための深層学習手法を提案する。
我々は、このタスクのために完全連結ニューラルネットワーク(FCN)と畳み込みニューラルネットワーク(CNN)を訓練する。
その結果, これらの深層学習モデルは, 乳頭乳酸キャピラリーと高い相関性を示すことがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate, real-time monitoring of tissue ischemia is crucial to understand tissue health and guide surgery. Spectral imaging shows great potential for contactless and intraoperative monitoring of tissue oxygenation. Due to the difficulty of obtaining direct reference oxygenation values, conventional methods are based on linear unmixing techniques. These are prone to assumptions and these linear relations may not always hold in practice. In this work, we present deep learning approaches for real-time tissue oxygenation estimation using Monte-Carlo simulated spectra. We train a fully connected neural network (FCN) and a convolutional neural network (CNN) for this task and propose a domain-adversarial training approach to bridge the gap between simulated and real clinical spectral data. Results demonstrate that these deep learning models achieve a higher correlation with capillary lactate measurements, a well-known marker of hypoxia, obtained during spectral imaging in surgery, compared to traditional linear unmixing. Notably, domain-adversarial training effectively reduces the domain gap, optimizing performance in real clinical settings.
- Abstract(参考訳): 組織虚血の正確なリアルタイムモニタリングは、組織の健康を理解し、手術をガイドするために重要である。
組織酸素化の非接触および術中モニタリングには, 分光像が有用である。
直接基準酸素化値を得るのが難しいため、従来の手法は線形アンミックス技術に基づいている。
これらは仮定に傾向があり、これらの線形関係は実際に常に成り立つとは限らない。
本研究では,モンテカルロ模擬スペクトルを用いたリアルタイム組織酸素化推定のための深層学習手法を提案する。
本研究は,本課題のために完全連結ニューラルネットワーク(FCN)と畳み込みニューラルネットワーク(CNN)を訓練し,シミュレーションと実際の臨床スペクトルデータのギャップを埋めるドメイン対逆トレーニング手法を提案する。
その結果, これらの深層学習モデルは, 従来のリニア・アンミックス法と比較して, スペクトル撮影時に得られた低酸素のマーカーである乳頭乳酸測定と高い相関性を示した。
特に、ドメイン・アドバイザリ・トレーニングはドメインギャップを効果的に減らし、実際の臨床環境での性能を最適化する。
関連論文リスト
- Topology-based deep-learning segmentation method for deep anterior lamellar keratoplasty (DALK) surgical guidance using M-mode OCT data [0.0]
本研究では,トポロジ的損失関数と改良型ネットワークアーキテクチャを統合した,トポロジに基づくディープラーニングセグメンテーション手法を提案する。
このアプローチは、ノイズの効果を効果的に低減し、セグメンテーション速度、精度、安定性を改善する。
論文 参考訳(メタデータ) (2025-01-07T19:57:15Z) - Enhancing Cognitive Workload Classification Using Integrated LSTM Layers and CNNs for fNIRS Data Analysis [13.74551296919155]
本稿では、ディープラーニングモデルにおける畳み込みニューラルネットワーク(CNN)の有効性に対する長期記憶層の影響について検討する。
LSTMレイヤを統合することで、モデルがfNIRSデータ内の時間的依存関係をキャプチャし、認知状態をより包括的に理解することが可能になる。
論文 参考訳(メタデータ) (2024-07-22T11:28:34Z) - Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy [55.2480439325792]
我々は、シーケンス固有のモデルベースのオートエンコーダをトレーニングすることで、そのようなデータの必要性を軽減する、深層無学習の自己教師付き学習を導入する。
提案手法は, 監視対象の性能を超過する。
論文 参考訳(メタデータ) (2024-03-25T17:40:32Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
本稿では,より高速でリアルなOCTA合成のために,空間コロニー化に基づく網膜血管網の軽量なシミュレーションを行う。
本研究では,3つの公開データセットに対する定量的および定性的実験において,提案手法の優れたセグメンテーション性能を示す。
論文 参考訳(メタデータ) (2023-06-19T14:01:47Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
X線CT(CT)スキャン中、患者を乗せた金属インプラントは、しばしば有害なアーティファクトに繋がる。
既存のディープラーニングベースの手法は、有望な再構築性能を得た。
本稿では,人工物の物理的事前構造に適応するために,配向型畳み込み表現戦略を提案する。
論文 参考訳(メタデータ) (2022-12-26T13:56:12Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
内視鏡下粘膜下郭清術における高精度かつリアルタイムなランドマーク検出のための形状認識型関係ネットワークを提案する。
まず,ランドマーク間の空間的関係に関する先行知識を直感的に表現する関係キーポイント・ヒートマップを自動生成するアルゴリズムを考案する。
次に、事前知識を学習プロセスに段階的に組み込むために、2つの補完的な正規化手法を開発する。
論文 参考訳(メタデータ) (2021-11-08T07:57:30Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z) - Segmentation of Retinal Low-Cost Optical Coherence Tomography Images
using Deep Learning [2.571523045125397]
治療の必要性は、病原性OCTベースのバイオマーカーの存在または変化によって決定される。
現在の治療スキームのモニタリング頻度は、個別に患者に適応していないため、しばしば不十分である。
ホームモニタリングOCTシステムの重要な要件の1つは、病理学的変化を自動的に検出し定量化するコンピュータ支援診断である。
論文 参考訳(メタデータ) (2020-01-23T12:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。