Clinical Validation of Deep Learning for Real-Time Tissue Oxygenation Estimation Using Spectral Imaging
- URL: http://arxiv.org/abs/2505.18010v1
- Date: Fri, 23 May 2025 15:14:27 GMT
- Title: Clinical Validation of Deep Learning for Real-Time Tissue Oxygenation Estimation Using Spectral Imaging
- Authors: Jens De Winne, Siri Willems, Siri Luthman, Danilo Babin, Hiep Luong, Wim Ceelen,
- Abstract summary: We present deep learning approaches for real-time tissue oxygenation estimation using Monte-Carlo simulated spectra.<n>We train a fully connected neural network (FCN) and a convolutional neural network (CNN) for this task.<n>Results demonstrate that these deep learning models achieve a higher correlation with capillary lactate measurements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate, real-time monitoring of tissue ischemia is crucial to understand tissue health and guide surgery. Spectral imaging shows great potential for contactless and intraoperative monitoring of tissue oxygenation. Due to the difficulty of obtaining direct reference oxygenation values, conventional methods are based on linear unmixing techniques. These are prone to assumptions and these linear relations may not always hold in practice. In this work, we present deep learning approaches for real-time tissue oxygenation estimation using Monte-Carlo simulated spectra. We train a fully connected neural network (FCN) and a convolutional neural network (CNN) for this task and propose a domain-adversarial training approach to bridge the gap between simulated and real clinical spectral data. Results demonstrate that these deep learning models achieve a higher correlation with capillary lactate measurements, a well-known marker of hypoxia, obtained during spectral imaging in surgery, compared to traditional linear unmixing. Notably, domain-adversarial training effectively reduces the domain gap, optimizing performance in real clinical settings.
Related papers
- Topology-based deep-learning segmentation method for deep anterior lamellar keratoplasty (DALK) surgical guidance using M-mode OCT data [0.0]
We develop a topology-based deep-learning segmentation method that integrates a topological loss function with a modified network architecture.<n>This approach effectively reduces the effects of noise and improves segmentation speed, precision, and stability.
arXiv Detail & Related papers (2025-01-07T19:57:15Z) - Enhancing Cognitive Workload Classification Using Integrated LSTM Layers and CNNs for fNIRS Data Analysis [13.74551296919155]
This paper explores the im-pact of Long Short-Term Memory layers on the effectiveness of Convolutional Neural Networks (CNNs) within deep learning models.
By integrating LSTM layers, the model can capture temporal dependencies in the fNIRS data, al-lowing for a more comprehensive understanding of cognitive states.
arXiv Detail & Related papers (2024-07-22T11:28:34Z) - Classification of Heart Sounds Using Multi-Branch Deep Convolutional Network and LSTM-CNN [2.7699831151653305]
This study develops and evaluates novel deep learning architectures that offer fast, accurate, and cost-effective methods for automatic diagnosis of cardiac diseases.<n>We propose two innovative methodologies: first, a Multi-Branch Deep Convolutional Neural Network (MBDCN) that emulates human auditory processing by utilizing diverse convolutional filter sizes and power spectrum input for enhanced feature extraction.<n>Second, a Long Short-Term Memory-Convolutional Neural (LSCN) model that integrates LSTM blocks with MBDCN to improve time-domain feature extraction.
arXiv Detail & Related papers (2024-07-15T13:02:54Z) - Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy [55.2480439325792]
We introduce deep unrolled self-supervised learning, which alleviates the need for such data by training a sequence-specific, model-based autoencoder.
Our proposed method exceeds the performance of its supervised counterparts.
arXiv Detail & Related papers (2024-03-25T17:40:32Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
We present a lightweight simulation of the retinal vascular network based on space colonization for faster and more realistic OCTA synthesis.
We demonstrate the superior segmentation performance of our approach in extensive quantitative and qualitative experiments on three public datasets.
arXiv Detail & Related papers (2023-06-19T14:01:47Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
During X-ray computed tomography (CT) scanning, metallic implants carrying with patients often lead to adverse artifacts.
Existing deep-learning-based methods have gained promising reconstruction performance.
We propose an orientation-shared convolution representation strategy to adapt the physical prior structures of artifacts.
arXiv Detail & Related papers (2022-12-26T13:56:12Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z) - Segmentation of Retinal Low-Cost Optical Coherence Tomography Images
using Deep Learning [2.571523045125397]
The need for treatment is determined by the presence or change of disease-specific OCT-based biomarkers.
The monitoring frequency of current treatment schemes is not individually adapted to the patient and therefore often insufficient.
One of the key requirements of a home monitoring OCT system is a computer-aided diagnosis to automatically detect and quantify pathological changes.
arXiv Detail & Related papers (2020-01-23T12:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.