ExoGait-MS: Learning Periodic Dynamics with Multi-Scale Graph Network for Exoskeleton Gait Recognition
- URL: http://arxiv.org/abs/2505.18018v1
- Date: Fri, 23 May 2025 15:24:25 GMT
- Title: ExoGait-MS: Learning Periodic Dynamics with Multi-Scale Graph Network for Exoskeleton Gait Recognition
- Authors: Lijiang Liu, Junyu Shi, Yong Sun, Zhiyuan Zhang, Jinni Zhou, Shugen Ma, Qiang Nie,
- Abstract summary: Current exoskeleton control methods often face challenges in delivering personalized treatment.<n>Personal gait is essential for the effectiveness of exoskeleton robots, as it directly impacts their adaptability, comfort, and rehabilitation outcomes for individual users.<n>We propose a novel approach, which uses Multi-Scale Global Dense Graph Convolutional Networks (GCN) in the spatial domain to identify latent joint synergy patterns.<n>Our experimental results demonstrate that our method achieves an impressive accuracy of 94.34% on this dataset, surpassing the current state-of-the-art (SOTA) by 3.77%.
- Score: 20.076175885171413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current exoskeleton control methods often face challenges in delivering personalized treatment. Standardized walking gaits can lead to patient discomfort or even injury. Therefore, personalized gait is essential for the effectiveness of exoskeleton robots, as it directly impacts their adaptability, comfort, and rehabilitation outcomes for individual users. To enable personalized treatment in exoskeleton-assisted therapy and related applications, accurate recognition of personal gait is crucial for implementing tailored gait control. The key challenge in gait recognition lies in effectively capturing individual differences in subtle gait features caused by joint synergy, such as step frequency and step length. To tackle this issue, we propose a novel approach, which uses Multi-Scale Global Dense Graph Convolutional Networks (GCN) in the spatial domain to identify latent joint synergy patterns. Moreover, we propose a Gait Non-linear Periodic Dynamics Learning module to effectively capture the periodic characteristics of gait in the temporal domain. To support our individual gait recognition task, we have constructed a comprehensive gait dataset that ensures both completeness and reliability. Our experimental results demonstrate that our method achieves an impressive accuracy of 94.34% on this dataset, surpassing the current state-of-the-art (SOTA) by 3.77%. This advancement underscores the potential of our approach to enhance personalized gait control in exoskeleton-assisted therapy.
Related papers
- Beyond Role-Based Surgical Domain Modeling: Generalizable Re-Identification in the Operating Room [36.67627283629717]
We present a staff-centric modeling approach that characterizes individual team members through their distinctive movement patterns and physical characteristics.<n>We develop a generalizable re-identification framework that encodes sequences of 3D point clouds to capture shape and articulated motion patterns unique to each individual.<n>Our method achieves 86.19% accuracy on realistic clinical data while maintaining 75.27% accuracy when transferring between different environments.
arXiv Detail & Related papers (2025-03-17T10:30:26Z) - Deep-Learning Control of Lower-Limb Exoskeletons via simplified Therapist Input [0.0]
Partial-assistance exoskeletons hold significant potential for gait rehabilitation.<n>The control of interaction torques in exoskeletons relies on a hierarchical control structure.<n>This work proposes a three-step, data-driven approach to address the limitations of hierarchical control in exoskeletons.
arXiv Detail & Related papers (2024-12-10T22:52:44Z) - A Deep Learning Sequential Decoder for Transient High-Density
Electromyography in Hand Gesture Recognition Using Subject-Embedded Transfer
Learning [11.170031300110315]
Hand gesture recognition (HGR) has gained significant attention due to the increasing use of AI-powered human-computers.
These interfaces have a range of applications, including the control of extended reality, agile prosthetics, and exoskeletons.
These interfaces have a range of applications, including the control of extended reality, agile prosthetics, and exoskeletons.
arXiv Detail & Related papers (2023-09-23T05:32:33Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Data-Driven Goal Recognition in Transhumeral Prostheses Using Process
Mining Techniques [7.95507524742396]
Active prostheses utilize real-valued, continuous sensor data to recognize patient target poses, or goals, and proactively move the artificial limb.
Previous studies have examined how well the data collected in stationary poses, without considering the time steps, can help discriminate the goals.
Our approach involves transforming the data into discrete events and training an existing process mining-based goal recognition system.
arXiv Detail & Related papers (2023-09-15T02:03:59Z) - GLSFormer : Gated - Long, Short Sequence Transformer for Step
Recognition in Surgical Videos [57.93194315839009]
We propose a vision transformer-based approach to learn temporal features directly from sequence-level patches.
We extensively evaluate our approach on two cataract surgery video datasets, Cataract-101 and D99, and demonstrate superior performance compared to various state-of-the-art methods.
arXiv Detail & Related papers (2023-07-20T17:57:04Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Towards a Deeper Understanding of Skeleton-based Gait Recognition [4.812321790984493]
In recent years, most gait recognition methods used the person's silhouette to extract the gait features.
Model-based methods do not suffer from these problems and are able to represent the temporal motion of body joints.
In this work, we propose an approach based on Graph Convolutional Networks (GCNs) that combines higher-order inputs, and residual networks.
arXiv Detail & Related papers (2022-04-16T18:23:37Z) - Personalized Rehabilitation Robotics based on Online Learning Control [62.6606062732021]
We propose a novel online learning control architecture, which is able to personalize the control force at run time to each individual user.
We evaluate our method in an experimental user study, where the learning controller is shown to provide personalized control, while also obtaining safe interaction forces.
arXiv Detail & Related papers (2021-10-01T15:28:44Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
Speech emotion recognition (SER) is a challenging task that plays a crucial role in natural human-computer interaction.
One of the main challenges in SER is data scarcity.
We propose a transfer learning strategy combined with spectrogram augmentation.
arXiv Detail & Related papers (2021-08-05T10:39:39Z) - ROIAL: Region of Interest Active Learning for Characterizing Exoskeleton
Gait Preference Landscapes [64.87637128500889]
Region of Interest Active Learning (ROIAL) framework actively learns each user's underlying utility function over a region of interest.
ROIAL learns from ordinal and preference feedback, which are more reliable feedback mechanisms than absolute numerical scores.
Results demonstrate the feasibility of recovering gait utility landscapes from limited human trials.
arXiv Detail & Related papers (2020-11-09T22:45:58Z) - Towards Understanding the Adversarial Vulnerability of Skeleton-based
Action Recognition [133.35968094967626]
Skeleton-based action recognition has attracted increasing attention due to its strong adaptability to dynamic circumstances.
With the help of deep learning techniques, it has also witnessed substantial progress and currently achieved around 90% accuracy in benign environment.
Research on the vulnerability of skeleton-based action recognition under different adversarial settings remains scant.
arXiv Detail & Related papers (2020-05-14T17:12:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.