Lost in the Haystack: Smaller Needles are More Difficult for LLMs to Find
- URL: http://arxiv.org/abs/2505.18148v1
- Date: Fri, 23 May 2025 17:57:42 GMT
- Title: Lost in the Haystack: Smaller Needles are More Difficult for LLMs to Find
- Authors: Owen Bianchi, Mathew J. Koretsky, Maya Willey, Chelsea X. Alvarado, Tanay Nayak, Adi Asija, Nicole Kuznetsov, Mike A. Nalls, Faraz Faghri, Daniel Khashabi,
- Abstract summary: Large language models (LLMs) face challenges with needle-in-a-haystack tasks, where relevant information must be drawn from a large pool of irrelevant context.<n>Previous studies have highlighted positional bias and distractor quantity as critical factors affecting model performance.<n>We study how variations in gold context length impact LLM performance on long-context question answering tasks.
- Score: 11.36808288554939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) face significant challenges with needle-in-a-haystack tasks, where relevant information ("the needle") must be drawn from a large pool of irrelevant context ("the haystack"). Previous studies have highlighted positional bias and distractor quantity as critical factors affecting model performance, yet the influence of gold context size has received little attention. We address this gap by systematically studying how variations in gold context length impact LLM performance on long-context question answering tasks. Our experiments reveal that LLM performance drops sharply when the gold context is shorter, i.e., smaller gold contexts consistently degrade model performance and amplify positional sensitivity, posing a major challenge for agentic systems that must integrate scattered, fine-grained information of varying lengths. This pattern holds across three diverse domains (general knowledge, biomedical reasoning, and mathematical reasoning) and seven state-of-the-art LLMs of various sizes and architectures. Our work provides clear insights to guide the design of robust, context-aware LLM-driven systems.
Related papers
- MLLMs are Deeply Affected by Modality Bias [158.64371871084478]
Recent advances in Multimodal Large Language Models (MLLMs) have shown promising results in integrating diverse modalities such as texts and images.<n>MLLMs are heavily influenced by modality bias, often relying on language while under-utilizing other modalities like visual inputs.<n>This paper argues that MLLMs are deeply affected by modality bias, highlighting its manifestations across various tasks.
arXiv Detail & Related papers (2025-05-24T11:49:31Z) - Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
Large Language Models (LLMs) are increasingly recognized for their practical applications.
Retrieval-Augmented Generation (RAG) tackles this challenge and has shown a significant impact on LLMs.
By minimizing retrieval requests that yield neutral or harmful results, we can effectively reduce both time and computational costs.
arXiv Detail & Related papers (2024-11-09T15:12:28Z) - Self-Consistency Falls Short! The Adverse Effects of Positional Bias on Long-Context Problems [18.633918831942434]
Self-consistency (SC) has been demonstrated to enhance the performance of large language models (LLMs)<n>We challenge the assumption that SC's benefits generalize to long-context settings.<n>We find that SC not only fails to improve but actively degrades performance on long-context tasks.
arXiv Detail & Related papers (2024-11-02T01:52:42Z) - ALR$^2$: A Retrieve-then-Reason Framework for Long-context Question Answering [42.146660039671076]
We develop a retrieve-then-reason framework for large language models (LLMs)
We find that modern LLMs struggle to accurately retrieve relevant facts and instead, often hallucinate "retrieved facts"
We introduce ALR$2$, a method that augments the long-context reasoning capability of LLMs via an explicit two-stage procedure.
arXiv Detail & Related papers (2024-10-04T08:29:12Z) - RUPBench: Benchmarking Reasoning Under Perturbations for Robustness Evaluation in Large Language Models [12.112914393948415]
We present RUPBench, a benchmark designed to evaluate large language models (LLMs) across diverse reasoning tasks.
Our benchmark incorporates 15 reasoning datasets, categorized into commonsense, arithmetic, logical, and knowledge-intensive reasoning.
By examining the performance of state-of-the-art LLMs such as GPT-4o, Llama3, Phi-3, and Gemma on both original and perturbed datasets, we provide a detailed analysis of their robustness and error patterns.
arXiv Detail & Related papers (2024-06-16T17:26:44Z) - Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
Large Language Models (LLMs) are effective in performing various NLP tasks, but struggle to handle tasks that require extensive, real-world knowledge.
We propose a benchmark that requires knowledge of long-tail facts for answering the involved questions.
Our experiments show that LLMs alone struggle with answering these questions, especially when the long-tail level is high or rich knowledge is required.
arXiv Detail & Related papers (2024-05-10T15:10:20Z) - LLM In-Context Recall is Prompt Dependent [0.0]
A model's ability to do this significantly influences its practical efficacy and dependability in real-world applications.
This study demonstrates that an LLM's recall capability is not only contingent upon the prompt's content but also may be compromised by biases in its training data.
arXiv Detail & Related papers (2024-04-13T01:13:59Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
Large Language Models (LLMs) have been widely used as general-purpose AI agents.
We propose a framework, Learning to Reduce, that fine-tunes a language model to generate a reduced version of an input context.
We show that our model achieves comparable accuracies in selecting the relevant evidence from an input context.
arXiv Detail & Related papers (2024-02-22T00:41:23Z) - Same Task, More Tokens: the Impact of Input Length on the Reasoning Performance of Large Language Models [48.35385912526338]
This paper explores the impact of extending input lengths on the capabilities of Large Language Models (LLMs)
We isolate the effect of input length using multiple versions of the same sample, each being extended with padding of different lengths, types and locations.
We show that the degradation trend appears in every version of our dataset, although at different intensities.
arXiv Detail & Related papers (2024-02-19T16:04:53Z) - LooGLE: Can Long-Context Language Models Understand Long Contexts? [46.143956498529796]
LooGLE is a benchmark for large language models' long context understanding.
It features relatively new documents post-2022, with over 24,000 tokens per document and 6,000 newly generated questions spanning diverse domains.
The evaluation of eight state-of-the-art LLMs on LooGLE revealed key findings.
arXiv Detail & Related papers (2023-11-08T01:45:37Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
We show that large language models (LLMs) possess unwavering confidence in their knowledge and cannot handle the conflict between internal and external knowledge well.
Retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries.
We propose a simple method to dynamically utilize supporting documents with our judgement strategy.
arXiv Detail & Related papers (2023-07-20T16:46:10Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z) - Prompting Large Language Models for Counterfactual Generation: An
Empirical Study [13.506528217009507]
Large language models (LLMs) have made remarkable progress in a wide range of natural language understanding and generation tasks.
We present a comprehensive evaluation framework on various types of NLU tasks, which covers all key factors in determining LLMs' capability of generating counterfactuals.
arXiv Detail & Related papers (2023-05-24T06:44:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.