Evaluation in EEG Emotion Recognition: State-of-the-Art Review and Unified Framework
- URL: http://arxiv.org/abs/2505.18175v1
- Date: Wed, 14 May 2025 20:44:39 GMT
- Title: Evaluation in EEG Emotion Recognition: State-of-the-Art Review and Unified Framework
- Authors: Natia Kukhilava, Tatia Tsmindashvili, Rapael Kalandadze, Anchit Gupta, Sofio Katamadze, François Brémond, Laura M. Ferrari, Philipp Müller, Benedikt Emanuel Wirth,
- Abstract summary: Electroencephalography-based Emotion Recognition (EEG-ER) has become a growing research area in recent years.<n>We propose a unified evaluation protocol, EEGain, which enables an easy and efficient evaluation of new methods and datasets.<n>EEGain includes standardized methods for data pre-processing, data splitting, evaluation metrics, and the ability to load the six most relevant datasets.
- Score: 14.019800269775262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electroencephalography-based Emotion Recognition (EEG-ER) has become a growing research area in recent years. Analyzing 216 papers published between 2018 and 2023, we uncover that the field lacks a unified evaluation protocol, which is essential to fairly define the state of the art, compare new approaches and to track the field's progress. We report the main inconsistencies between the used evaluation protocols, which are related to ground truth definition, evaluation metric selection, data splitting types (e.g., subject-dependent or subject-independent) and the use of different datasets. Capitalizing on this state-of-the-art research, we propose a unified evaluation protocol, EEGain (https://github.com/EmotionLab/EEGain), which enables an easy and efficient evaluation of new methods and datasets. EEGain is a novel open source software framework, offering the capability to compare - and thus define - state-of-the-art results. EEGain includes standardized methods for data pre-processing, data splitting, evaluation metrics, and the ability to load the six most relevant datasets (i.e., AMIGOS, DEAP, DREAMER, MAHNOB-HCI, SEED, SEED-IV) in EEG-ER with only a single line of code. In addition, we have assessed and validated EEGain using these six datasets on the four most common publicly available methods (EEGNet, DeepConvNet, ShallowConvNet, TSception). This is a significant step to make research on EEG-ER more reproducible and comparable, thereby accelerating the overall progress of the field.
Related papers
- mixEEG: Enhancing EEG Federated Learning for Cross-subject EEG Classification with Tailored mixup [5.367329958716485]
Cross-subject electroencephalography (EEG) classification exhibits great challenges due to the diversity of cognitive processes and physiological structures between different subjects.<n>Privacy concerns associated with EEG pose significant limitations to data sharing between different hospitals and institutions.<n> Federated learning (FL) enables multiple decentralized clients to collaboratively train a global model without direct communication of raw data.
arXiv Detail & Related papers (2025-04-07T06:24:23Z) - LibEER: A Comprehensive Benchmark and Algorithm Library for EEG-based Emotion Recognition [31.383215932044408]
EEG-based emotion recognition (EER) has gained significant attention due to its potential for understanding and analyzing human emotions.
The field lacks a convincing benchmark and comprehensive open-source libraries.
We introduce LibEER, a comprehensive benchmark and algorithm library designed to facilitate fair comparisons in EER.
arXiv Detail & Related papers (2024-10-13T07:51:39Z) - Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
Large language models (LLMs) have brought substantial advancements in text generation, but their potential for enhancing classification tasks remains underexplored.
We propose a framework for thoroughly investigating fine-tuning LLMs for classification, including both generation- and encoding-based approaches.
We instantiate this framework in edit intent classification (EIC), a challenging and underexplored classification task.
arXiv Detail & Related papers (2024-10-02T20:48:28Z) - Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) aims to predict all quads (aspect term, aspect category, opinion term, sentiment polarity) for a given review.
A key challenge in the ASQP task is the scarcity of labeled data, which limits the performance of existing methods.
We propose a self-training framework with a pseudo-label scorer, wherein a scorer assesses the match between reviews and their pseudo-labels.
arXiv Detail & Related papers (2024-06-26T05:30:21Z) - Semi-Supervised Dual-Stream Self-Attentive Adversarial Graph Contrastive Learning for Cross-Subject EEG-based Emotion Recognition [19.578050094283313]
The DS-AGC framework is proposed to tackle the challenge of limited labeled data in cross-subject EEG-based emotion recognition.
The proposed model outperforms existing methods under different incomplete label conditions.
arXiv Detail & Related papers (2023-08-13T23:54:40Z) - EEGMatch: Learning with Incomplete Labels for Semi-Supervised EEG-based Cross-Subject Emotion Recognition [7.1695247553867345]
We propose a novel semi-supervised learning framework (EEGMatch) to leverage both labeled and unlabeled EEG data.
Extensive experiments are conducted on two benchmark databases (SEED and SEED-IV)
arXiv Detail & Related papers (2023-03-27T12:02:33Z) - A Closer Look at Debiased Temporal Sentence Grounding in Videos:
Dataset, Metric, and Approach [53.727460222955266]
Temporal Sentence Grounding in Videos (TSGV) aims to ground a natural language sentence in an untrimmed video.
Recent studies have found that current benchmark datasets may have obvious moment annotation biases.
We introduce a new evaluation metric "dR@n,IoU@m" that discounts the basic recall scores to alleviate the inflating evaluation caused by biased datasets.
arXiv Detail & Related papers (2022-03-10T08:58:18Z) - PARSE: Pairwise Alignment of Representations in Semi-Supervised EEG
Learning for Emotion Recognition [23.40229188549055]
We propose PARSE, a novel semi-supervised architecture for learning strong EEG representations for emotion recognition.
To reduce the potential distribution mismatch between the large amounts of unlabeled data and the limited amount of labeled data, PARSE uses pairwise representation alignment.
arXiv Detail & Related papers (2022-02-11T01:10:17Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.