GAIA: A Foundation Model for Operational Atmospheric Dynamics
- URL: http://arxiv.org/abs/2505.18179v1
- Date: Thu, 15 May 2025 05:07:09 GMT
- Title: GAIA: A Foundation Model for Operational Atmospheric Dynamics
- Authors: Ata Akbari Asanjan, Olivia Alexander, Tom Berg, Clara Zhang, Matt Yang, Jad Makki, Disha Shidham, Srija Chakraborty, William Bender, Stephen Peng, Arun Ravindran, Olivier Raiman, David Potere, David Bell,
- Abstract summary: GAIA is a novel model that combines masked autoencoders (MAE) and self-DIstillation with NO labels (DINO) for analyzing global atmospheric patterns in satellite imagery.<n>By integrating these complementary self-supervised learning approaches, our model simultaneously captures both local features and global dependencies.
- Score: 0.7454461126580372
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the GAIA (Geospatial Artificial Intelligence for Atmospheres) Foundation Model, a novel model that combines masked autoencoders (MAE) and self-DIstillation with NO labels (DINO) for analyzing global atmospheric patterns in satellite imagery. By integrating these complementary self-supervised learning approaches, our model simultaneously captures both local features and global dependencies. We address two critical challenges in satellite data analysis: reconstructing missing regions and estimating precipitation patterns as our first downstream tasks. The model demonstrates superior temporal pattern capture compared to standard MAE approaches, while maintaining robust performance in downstream tasks. Our experimental results show strong gap-filling capabilities across varying mask ratios and accurate precipitation estimation with limited training data, achieving a false alarm ratio of 0.088 and structural similarity of 0.881. This work represents an advancement in self-supervised learning for atmospheric science, providing a foundation for improved weather monitoring and climate analysis. The trained model weights and accompanying code are publicly available as open-source on Hugging Face here: https://huggingface.co/bcg-usra-nasa-gaia/GAIA-v1.
Related papers
- TerraFM: A Scalable Foundation Model for Unified Multisensor Earth Observation [65.74990259650984]
We introduce TerraFM, a scalable self-supervised learning model that leverages globally distributed Sentinel-1 and Sentinel-2 imagery.<n>Our training strategy integrates local-global contrastive learning and introduces a dual-centering mechanism.<n>TerraFM achieves strong generalization on both classification and segmentation tasks, outperforming prior models on GEO-Bench and Copernicus-Bench.
arXiv Detail & Related papers (2025-06-06T17:59:50Z) - Appa: Bending Weather Dynamics with Latent Diffusion Models for Global Data Assimilation [4.430758443755128]
Appa is a score-based data assimilation model producing global atmospheric trajectories at 0.25-degree resolution and 1-hour intervals.<n>Our results establish latent score-based data assimilation as a promising foundation for future global atmospheric modeling systems.
arXiv Detail & Related papers (2025-04-25T22:14:29Z) - Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation [67.23953699167274]
Self-supervised learning (SSL) has enabled the development of vision foundation models for Earth Observation (EO)<n>In EO, this challenge is amplified by the redundancy and heavy-tailed distributions common in satellite imagery.<n>We propose a dynamic dataset pruning strategy designed to improve SSL pre-training by maximizing dataset diversity and balance.
arXiv Detail & Related papers (2025-04-09T15:13:26Z) - A Self-Supervised Framework for Space Object Behaviour Characterisation [0.8461401246656917]
Foundation Models, pre-trained on large unlabelled datasets before task-specific fine-tuning, are increasingly being applied to specialised domains.<n>We present a Space Safety and Sustainability Foundation Model focusing on space object behavioural analysis using light curves (LCs)<n>We implement a Perceiver-Variational Autoencoder (VAE) architecture, pre-trained with self-supervised reconstruction and masked reconstruction on 227,000 LCs from the MMT-9 observatory.
arXiv Detail & Related papers (2025-04-08T16:19:19Z) - Probabilistic Emulation of a Global Climate Model with Spherical DYffusion [15.460280166612119]
We present the first conditional generative model that produces accurate and physically consistent global climate ensemble simulations.
Our model integrates the dynamics-informed diffusion framework (DYffusion) with the Spherical Fourier Neural Operator (SFNO) architecture.
The model achieves near gold-standard performance for climate model emulation, outperforming existing approaches and demonstrating promising ensemble skill.
arXiv Detail & Related papers (2024-06-21T00:16:55Z) - Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales [5.427841765899196]
We demonstrate the viability of score-based data assimilation in the context of realistically complex km-scale weather.<n>By incorporating observations from 40 weather stations, 10% lower RMSEs on left-out stations are attained.<n>It is a ripe time to explore extensions that combine increasingly ambitious regional state generators with an increasing set of in situ, ground-based, and satellite remote sensing data streams.
arXiv Detail & Related papers (2024-06-19T10:28:11Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Foundation Models for Generalist Geospatial Artificial Intelligence [3.7002058945990415]
This paper introduces a first-of-a-kind framework for the efficient pre-training and fine-tuning of foundational models on extensive data.
We have utilized this framework to create Prithvi, a transformer-based foundational model pre-trained on more than 1TB of multispectral satellite imagery.
arXiv Detail & Related papers (2023-10-28T10:19:55Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
We introduce a novel saliency prediction model that learns to output saliency maps in sequential time intervals.
Our approach locally modulates the saliency predictions by combining the learned temporal maps.
Our code will be publicly available on GitHub.
arXiv Detail & Related papers (2023-01-05T22:10:16Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.