論文の概要: GAIA: A Foundation Model for Operational Atmospheric Dynamics
- arxiv url: http://arxiv.org/abs/2505.18179v2
- Date: Thu, 30 Oct 2025 19:40:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-03 17:52:15.817181
- Title: GAIA: A Foundation Model for Operational Atmospheric Dynamics
- Title(参考訳): GAIA:オペレーショナル・エアロダイナミクスの基礎モデル
- Authors: Ata Akbari Asanjan, Olivia Alexander, Tom Berg, Stephen Peng, Jad Makki, Clara Zhang, Matt Yang, Disha Shidham, Srija Chakraborty, William Bender, Cara Crawford, Arun Ravindran, Olivier Raiman, David Potere, David Bell,
- Abstract要約: 我々は,MAE(Masked Autoencoders)とラベルのない自己蒸留(DINO)を融合したハイブリッド自己教師型モデルGAIAを紹介する。
GAIAは、自明な日中パターンではなく、大気力学を捉える非絡み合った表現を学ぶ。
下流タスクに移行すると、GAIAは一貫してMAEのみのベースラインを上回っます。
- 参考スコア(独自算出の注目度): 0.83442357861662
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce GAIA (Geospatial Artificial Intelligence for Atmospheres), a hybrid self-supervised geospatial foundation model that fuses Masked Autoencoders (MAE) with self-distillation with no labels (DINO) to generate semantically rich representations from global geostationary satellite imagery. Pre-trained on 15 years of globally-merged infrared observations (2001-2015), GAIA learns disentangled representations that capture atmospheric dynamics rather than trivial diurnal patterns, as evidenced by distributed principal component structure and temporal coherence analysis. We demonstrate robust reconstruction capabilities across varying data availability (30-95% masking), achieving superior gap-filling performance on real missing data patterns. When transferred to downstream tasks, GAIA consistently outperforms an MAE-only baseline: improving atmospheric river segmentation (F1: 0.58 vs 0.52), enhancing tropical cyclone detection (storm-level recall: 81% vs 75%, early detection: 29% vs 17%), and maintaining competitive precipitation estimation performance. Analysis reveals that GAIA's hybrid objectives encourage learning of spatially coherent, object-centric features distributed across multiple principal components rather than concentrated representations focused on reconstruction. This work demonstrates that combining complementary self-supervised objectives yields more transferable representations for diverse atmospheric modeling tasks. Model weights and code are available at: https://huggingface.co/bcg-usra-nasa-gaia/GAIA-v1.
- Abstract(参考訳): GAIA (Geospatial Artificial Intelligence for Atmospheres) は,Masked Autoencoders (MAE) をラベルなしの自己蒸留で融合し,地球規模の静止衛星画像から意味的に豊かな表現を生成するハイブリッドな地理空間基盤モデルである。
GAIAは2001-2015年までの15年間の国際統合赤外線観測で、分散主成分構造と時間的コヒーレンス解析によって証明されたように、自明な日中パターンではなく、大気力学を捉える不整合表現を学習した。
各種データ・アベイラビリティー(30~95%のマスキング)にまたがる堅牢な再構築機能を示し、真の欠落データ・パターンに対して優れたギャップ埋め性能を実現する。
GAIAは、下流のタスクに移行すると、大気中の河川セグメンテーションの改善(F1: 0.58 vs 0.52)、熱帯のサイクロン検出の強化(嵐レベルのリコール: 81% vs 75%、早期検出: 29% vs 17%)、競争力のある降水量推定性能の維持など、MAEのみのベースラインを一貫して上回っている。
GAIAのハイブリッド目的は、再構成に焦点を当てた集中表現ではなく、複数の主成分にまたがる空間的に一貫性のある、オブジェクト中心の特徴の学習を促進する。
この研究は、補完的な自己監督目的を組み合わせることで、様々な大気モデルタスクに対してより伝達可能な表現が得られることを示した。
モデルウェイトとコードは、https://huggingface.co/bcg-usra-nasa-gaia/GAIA-v1.comで入手できる。
関連論文リスト
- TerraFM: A Scalable Foundation Model for Unified Multisensor Earth Observation [65.74990259650984]
本研究では,グローバルに分散したSentinel-1とSentinel-2画像を利用する,スケーラブルな自己教師型学習モデルTerraFMを紹介する。
我々のトレーニング戦略は、局所的・言語的コントラスト学習を統合し、二重中心化機構を導入する。
TerraFMは分類タスクとセグメンテーションタスクの両方において強力な一般化を実現し、GEO-BenchとCopernicus-Benchの先行モデルよりも優れている。
論文 参考訳(メタデータ) (2025-06-06T17:59:50Z) - Appa: Bending Weather Dynamics with Latent Diffusion Models for Global Data Assimilation [4.430758443755128]
Appaはスコアベースのデータ同化モデルで、地球規模の大気軌道を0.25度と1時間間隔で生成する。
この結果から,将来的な大気モデルシステムの基礎として,潜在スコアに基づくデータ同化が確立される。
論文 参考訳(メタデータ) (2025-04-25T22:14:29Z) - Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation [67.23953699167274]
自己教師付き学習(SSL)により、地球観測のための視覚基盤モデルの開発が可能になった。
EOでは、この課題は衛星画像に共通する冗長性と重尾分布によって増幅される。
本稿では,データセットの多様性とバランスを最大化し,SSL事前トレーニングを改善するために設計された動的データセットプルーニング戦略を提案する。
論文 参考訳(メタデータ) (2025-04-09T15:13:26Z) - A Self-Supervised Framework for Space Object Behaviour Characterisation [0.8461401246656917]
タスク固有の微調整の前に、大きな未ラベルデータセットで事前トレーニングされたファンデーションモデルは、特殊化されたドメインにますます適用されています。
光度曲線(LC)を用いた宇宙物体の挙動解析に着目した宇宙安全・持続可能性基礎モデルを提案する。
我々は,MMT-9観測所の227,000LCに対して,自己教師型再構成とマスク型再構成を行ったPerceiver-Variational Autoencoder (VAE) アーキテクチャを実装した。
論文 参考訳(メタデータ) (2025-04-08T16:19:19Z) - Probabilistic Emulation of a Global Climate Model with Spherical DYffusion [15.460280166612119]
本研究では, 高精度で物理的に整合した地球規模の気候アンサンブルシミュレーションを作成した最初の条件生成モデルを提案する。
我々のモデルは、動的インフォームド拡散フレームワーク(DYffusion)と、球状フーリエニューラル演算子(SFNO)アーキテクチャを統合する。
このモデルは、気候モデルエミュレーションのための金本位に近い性能を達成し、既存のアプローチを上回り、有望なアンサンブルスキルを実証する。
論文 参考訳(メタデータ) (2024-06-21T00:16:55Z) - Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales [5.427841765899196]
そこで本研究では,現実的に複雑な1kmスケールの気象条件下でのスコアベースデータ同化の実現可能性を示す。
40の気象観測所からの観測を取り入れることで、左の観測所で10%低いRMSEが達成される。
ますます野心的な地域国家ジェネレータと、In situ、地上ベース、衛星リモートセンシングデータストリームの集合を組み合わす拡張を探求する時期だ。
論文 参考訳(メタデータ) (2024-06-19T10:28:11Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Foundation Models for Generalist Geospatial Artificial Intelligence [3.7002058945990415]
本稿では,大規模データに基づく基礎モデルの事前学習と微調整を効果的に行うための第1種フレームワークを提案する。
我々はこの枠組みを利用して、マルチスペクトル衛星画像の1TB以上を事前トレーニングしたトランスフォーマーベースの基礎モデルであるPrithviを開発した。
論文 参考訳(メタデータ) (2023-10-28T10:19:55Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
本稿では,逐次時間間隔でサリエンシマップを出力する新たなサリエンシ予測モデルを提案する。
提案手法は,学習した時間マップを組み合わせることで,サリエンシ予測を局所的に調整する。
私たちのコードはGitHubで公開されます。
論文 参考訳(メタデータ) (2023-01-05T22:10:16Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
空気質は人間の健康に大きく影響し、空気質指数(AQI)の正確かつタイムリーな予測がますます重要になっている。
本稿では, 精密な3次元空気質モニタリングと予測を行うための, 新たなフェデレーション学習型地上空気質検知フレームワークを提案する。
地中センシングシステムでは, グラフ畳み込みニューラルネットワークを用いたLong Short-Term Memory (GC-LSTM) モデルを提案し, 高精度, リアルタイム, 将来的なAQI推論を実現する。
論文 参考訳(メタデータ) (2020-07-23T13:32:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。