論文の概要: Probabilistic Emulation of a Global Climate Model with Spherical DYffusion
- arxiv url: http://arxiv.org/abs/2406.14798v2
- Date: Wed, 13 Nov 2024 01:36:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:09:48.831393
- Title: Probabilistic Emulation of a Global Climate Model with Spherical DYffusion
- Title(参考訳): 球状拡散を伴う地球規模の気候モデルの確率論的エミュレーション
- Authors: Salva Rühling Cachay, Brian Henn, Oliver Watt-Meyer, Christopher S. Bretherton, Rose Yu,
- Abstract要約: 本研究では, 高精度で物理的に整合した地球規模の気候アンサンブルシミュレーションを作成した最初の条件生成モデルを提案する。
我々のモデルは、動的インフォームド拡散フレームワーク(DYffusion)と、球状フーリエニューラル演算子(SFNO)アーキテクチャを統合する。
このモデルは、気候モデルエミュレーションのための金本位に近い性能を達成し、既存のアプローチを上回り、有望なアンサンブルスキルを実証する。
- 参考スコア(独自算出の注目度): 15.460280166612119
- License:
- Abstract: Data-driven deep learning models are transforming global weather forecasting. It is an open question if this success can extend to climate modeling, where the complexity of the data and long inference rollouts pose significant challenges. Here, we present the first conditional generative model that produces accurate and physically consistent global climate ensemble simulations by emulating a coarse version of the United States' primary operational global forecast model, FV3GFS. Our model integrates the dynamics-informed diffusion framework (DYffusion) with the Spherical Fourier Neural Operator (SFNO) architecture, enabling stable 100-year simulations at 6-hourly timesteps while maintaining low computational overhead compared to single-step deterministic baselines. The model achieves near gold-standard performance for climate model emulation, outperforming existing approaches and demonstrating promising ensemble skill. This work represents a significant advance towards efficient, data-driven climate simulations that can enhance our understanding of the climate system and inform adaptation strategies.
- Abstract(参考訳): データ駆動のディープラーニングモデルは、世界的な天気予報を変革している。
この成功が、データと長期の推論ロールアウトの複雑さが重大な課題となる、気候モデリングにまで拡張できるかどうかは、明らかな疑問である。
ここでは、米国の主要な運用グローバル予測モデルであるFV3GFSの粗いバージョンをエミュレートすることにより、正確で物理的に一貫したグローバルな気候アンサンブルシミュレーションを生成する、最初の条件生成モデルを提案する。
本モデルでは,動的インフォームド拡散フレームワーク (DYffusion) と球状フーリエニューラル演算器 (SFNO) アーキテクチャを統合し,計算オーバーヘッドを1ステップ決定的ベースラインと比較して低く保ちながら,6時間周期で安定な100年シミュレーションを実現する。
このモデルは、気候モデルエミュレーションのための金本位に近い性能を達成し、既存のアプローチを上回り、有望なアンサンブルスキルを実証する。
この研究は、我々の気候システムに対する理解を高め、適応戦略を通知できる効率的なデータ駆動型気候シミュレーションへの大きな進歩を示している。
関連論文リスト
- Latent Diffusion Model for Generating Ensembles of Climate Simulations [2.144088660722956]
我々は、広範囲の気候シミュレーションに基づいて、新しい生成的深層学習アプローチを訓練する。
潜在空間表現を利用することで、我々のモデルは最小限のメモリを必要とする大規模なアンサンブルをオンザフライで迅速に生成できる。
論文 参考訳(メタデータ) (2024-07-02T08:59:24Z) - Aurora: A Foundation Model of the Atmosphere [56.97266186291677]
我々はAuroraを紹介します。Auroraは、100万時間以上の多様な気象および気候データに基づいてトレーニングされた大気の大規模な基礎モデルです。
オーロラは1分以内に5日間の大気汚染予測と10日間の高解像度気象予測を生み出している。
論文 参考訳(メタデータ) (2024-05-20T14:45:18Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
我々は、気象時系列から表現指標を予測するために、ディープニューラルネットワークを訓練する。
このアプローチは従来のプロセスベースのモデルよりも優れています。
論文 参考訳(メタデータ) (2024-01-08T15:29:23Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - Expanding Mars Climate Modeling: Interpretable Machine Learning for
Modeling MSL Relative Humidity [0.0]
本稿では,機械学習技術を活用した火星の気候モデリング手法を提案する。
我々の研究は、Gale Craterの相対湿度を正確にモデル化するために設計されたディープニューラルネットワークを提案する。
我々のニューラルネットワークは、いくつかの気象変数を用いて、ガレクレーターの相対湿度を効果的にモデル化できることがわかった。
論文 参考訳(メタデータ) (2023-09-04T08:15:15Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Loosely Conditioned Emulation of Global Climate Models With Generative
Adversarial Networks [2.937141232326068]
我々は、完全に結合した地球モデルから毎日の降水量をエミュレートする2つの「緩やかな条件付き」ジェネレーターネットワーク(GAN)を訓練する。
GANは時間的なサンプルを作り出すために訓練されます:地球を区別する64x128規則的な格子上の沈殿物の32日。
当社の訓練を受けたGANは、大幅に削減された計算コストで多数の実現を迅速に生成できます。
論文 参考訳(メタデータ) (2021-04-29T02:10:08Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
地球系モデル(ESM)は、気候変動シナリオの将来の予測を生成するためにしばしば用いられる。
妥協として、エミュレータはかなり安価であるが、ESMの複雑さを全て備えているわけではない。
本稿では, ESMエミュレータとして, 条件付き生成逆数ネットワーク(GAN)の使用を実証する。
論文 参考訳(メタデータ) (2020-11-23T20:13:37Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
2つの気候モデルのうちの1つで第3の中間安定状態が見つかる。
我々のアプローチを組み合わせることで、海洋熱輸送とエントロピー生産の負のフィードバックが地球の気候の地形をどのように大きく変えるかを特定することができる。
論文 参考訳(メタデータ) (2020-10-20T15:31:38Z) - HECT: High-Dimensional Ensemble Consistency Testing for Climate Models [1.7587442088965226]
気候モデルは、気候変動が気候変動に与える影響を理解する上で重要な役割を担い、気候変動のリスクを軽減し、決定を通知する。
コミュニティアース・システム・モデル (CESM) のような大域的な気候モデルは、大気、陸、海、氷の相互作用を記述する数百万行のコードで非常に複雑である。
私たちの研究は、木に基づくアルゴリズムやディープニューラルネットワークのような確率論的手法を使って、高次元および人為的なデータの統計的に厳密な適合性テストを行います。
論文 参考訳(メタデータ) (2020-10-08T15:16:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。