論文の概要: Probabilistic Emulation of a Global Climate Model with Spherical DYffusion
- arxiv url: http://arxiv.org/abs/2406.14798v2
- Date: Wed, 13 Nov 2024 01:36:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:09:48.831393
- Title: Probabilistic Emulation of a Global Climate Model with Spherical DYffusion
- Title(参考訳): 球状拡散を伴う地球規模の気候モデルの確率論的エミュレーション
- Authors: Salva Rühling Cachay, Brian Henn, Oliver Watt-Meyer, Christopher S. Bretherton, Rose Yu,
- Abstract要約: 本研究では, 高精度で物理的に整合した地球規模の気候アンサンブルシミュレーションを作成した最初の条件生成モデルを提案する。
我々のモデルは、動的インフォームド拡散フレームワーク(DYffusion)と、球状フーリエニューラル演算子(SFNO)アーキテクチャを統合する。
このモデルは、気候モデルエミュレーションのための金本位に近い性能を達成し、既存のアプローチを上回り、有望なアンサンブルスキルを実証する。
- 参考スコア(独自算出の注目度): 15.460280166612119
- License:
- Abstract: Data-driven deep learning models are transforming global weather forecasting. It is an open question if this success can extend to climate modeling, where the complexity of the data and long inference rollouts pose significant challenges. Here, we present the first conditional generative model that produces accurate and physically consistent global climate ensemble simulations by emulating a coarse version of the United States' primary operational global forecast model, FV3GFS. Our model integrates the dynamics-informed diffusion framework (DYffusion) with the Spherical Fourier Neural Operator (SFNO) architecture, enabling stable 100-year simulations at 6-hourly timesteps while maintaining low computational overhead compared to single-step deterministic baselines. The model achieves near gold-standard performance for climate model emulation, outperforming existing approaches and demonstrating promising ensemble skill. This work represents a significant advance towards efficient, data-driven climate simulations that can enhance our understanding of the climate system and inform adaptation strategies.
- Abstract(参考訳): データ駆動のディープラーニングモデルは、世界的な天気予報を変革している。
この成功が、データと長期の推論ロールアウトの複雑さが重大な課題となる、気候モデリングにまで拡張できるかどうかは、明らかな疑問である。
ここでは、米国の主要な運用グローバル予測モデルであるFV3GFSの粗いバージョンをエミュレートすることにより、正確で物理的に一貫したグローバルな気候アンサンブルシミュレーションを生成する、最初の条件生成モデルを提案する。
本モデルでは,動的インフォームド拡散フレームワーク (DYffusion) と球状フーリエニューラル演算器 (SFNO) アーキテクチャを統合し,計算オーバーヘッドを1ステップ決定的ベースラインと比較して低く保ちながら,6時間周期で安定な100年シミュレーションを実現する。
このモデルは、気候モデルエミュレーションのための金本位に近い性能を達成し、既存のアプローチを上回り、有望なアンサンブルスキルを実証する。
この研究は、我々の気候システムに対する理解を高め、適応戦略を通知できる効率的なデータ駆動型気候シミュレーションへの大きな進歩を示している。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Latent Diffusion Model for Generating Ensembles of Climate Simulations [2.144088660722956]
我々は、広範囲の気候シミュレーションに基づいて、新しい生成的深層学習アプローチを訓練する。
潜在空間表現を利用することで、我々のモデルは最小限のメモリを必要とする大規模なアンサンブルをオンザフライで迅速に生成できる。
論文 参考訳(メタデータ) (2024-07-02T08:59:24Z) - Advancing Data-driven Weather Forecasting: Time-Sliding Data
Augmentation of ERA5 [3.3748750222488657]
我々は高解像度データへの共通依存から逸脱する新しい戦略を導入する。
本稿では,データ拡張と処理に対する新たなアプローチとして,変数の追加による従来のアプローチの改善について述べる。
その結果, 解像度が低いにもかかわらず, 提案手法は大気条件の予測にかなり精度が高いことがわかった。
論文 参考訳(メタデータ) (2024-02-13T03:01:22Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures
Emulation [13.745581787463962]
本稿では,エネルギー収支モデルの物理温度応答方程式を満たすデータ駆動エミュレータであるFaIRGPを紹介する。
本稿では,FaIRGPを用いて大気上層放射力の推定値を得る方法について述べる。
この研究が、気候エミュレーションにおけるデータ駆動手法の採用の拡大に寄与することを期待している。
論文 参考訳(メタデータ) (2023-07-14T08:43:36Z) - Climate Intervention Analysis using AI Model Guided by Statistical
Physics Principles [6.824166358727082]
変動散逸理論(FDT)として知られる統計物理学の原理を応用した新しい解法を提案する。
利用することで,地球系モデルによって生成された大規模なデータセットに符号化された情報を抽出することができる。
我々のモデルであるAiBEDOは、地球および地域表面の気候に対する放射摂動の複雑なマルチタイム効果を捉えることができる。
論文 参考訳(メタデータ) (2023-02-07T05:09:10Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Loosely Conditioned Emulation of Global Climate Models With Generative
Adversarial Networks [2.937141232326068]
我々は、完全に結合した地球モデルから毎日の降水量をエミュレートする2つの「緩やかな条件付き」ジェネレーターネットワーク(GAN)を訓練する。
GANは時間的なサンプルを作り出すために訓練されます:地球を区別する64x128規則的な格子上の沈殿物の32日。
当社の訓練を受けたGANは、大幅に削減された計算コストで多数の実現を迅速に生成できます。
論文 参考訳(メタデータ) (2021-04-29T02:10:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。