Decomposition of Water Demand Patterns Using Skewed Gaussian Distributions for Behavioral Insights and Operational Planning
- URL: http://arxiv.org/abs/2505.18245v1
- Date: Fri, 23 May 2025 17:00:53 GMT
- Title: Decomposition of Water Demand Patterns Using Skewed Gaussian Distributions for Behavioral Insights and Operational Planning
- Authors: Roy Elkayam,
- Abstract summary: This study presents a novel approach for decomposing urban water demand patterns using Skewed Gaussian Distributions (SGD)<n>SGD characterizes each peak with interpretable parameters, including peak amplitude, timing (mean), spread (duration), and skewness (asymmetry)<n>This detailed peak-level decomposition enables both operational applications, e.g. anomaly and leakage detection, real-time demand management, and strategic analyses.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents a novel approach for decomposing urban water demand patterns using Skewed Gaussian Distributions (SGD) to derive behavioral insights and support operational planning. Hourly demand profiles contain critical information for both long-term infrastructure design and daily operations, influencing network pressures, water quality, energy consumption, and overall reliability. By breaking down each daily demand curve into a baseline component and distinct peak components, the proposed SGD method characterizes each peak with interpretable parameters, including peak amplitude, timing (mean), spread (duration), and skewness (asymmetry), thereby reconstructing the observed pattern and uncovering latent usage dynamics. This detailed peak-level decomposition enables both operational applications, e.g. anomaly and leakage detection, real-time demand management, and strategic analyses, e.g. identifying behavioral shifts, seasonal influences, or policy impacts on consumption patterns. Unlike traditional symmetric Gaussian or purely statistical time-series models, SGDs explicitly capture asymmetric peak shapes such as sharp morning surges followed by gradual declines, improving the fidelity of synthetic pattern generation and enhancing the detection of irregular consumption behavior. The method is demonstrated on several real-world datasets, showing that SGD outperforms symmetric Gaussian models in reconstruction accuracy, reducing root-mean-square error by over 50% on average, while maintaining physical interpretability. The SGD framework can also be used to construct synthetic demand scenarios by designing daily peak profiles with chosen characteristics. All implementation code is publicly available at: https://github.com/Relkayam/water-demand-decomposition-sgd
Related papers
- Robust Filtering and Learning in State-Space Models: Skewness and Heavy Tails Via Asymmetric Laplace Distribution [8.60136504672206]
We propose an efficient variational Bayes algorithm and a novel single-loop parameter estimation strategy.<n>Our experiments demonstrate that our methods provide consistently robust performance across various noise settings.
arXiv Detail & Related papers (2025-07-30T03:06:27Z) - A Novel Method to Manage Production on Industry 4.0: Forecasting Overall Equipment Efficiency by Time Series with Topological Features [0.0]
Overall equipment efficiency (OEE) is a key manufacturing production, but its volatile nature complicates short-term forecasting.<n>This study presents a novel framework combining time series decomposition and topological data analysis to improve OEE prediction across various equipment.
arXiv Detail & Related papers (2025-06-20T10:04:49Z) - Analyzing Spatio-Temporal Dynamics of Dissolved Oxygen for the River Thames using Superstatistical Methods and Machine Learning [0.0]
We use superstatistical methods and machine learning to predict dissolved oxygen levels in the River Thames.<n>For long-term forecasting, the Informer model consistently delivers superior performance.
arXiv Detail & Related papers (2025-01-10T16:54:52Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
We consider a dynamic model with the consumers' preferences as well as price sensitivity varying over time.
We measure the performance of a dynamic pricing policy via regret, which is the expected revenue loss compared to a clairvoyant that knows the sequence of model parameters in advance.
Our regret analysis results not only demonstrate optimality of the proposed policy but also show that for policy planning it is essential to incorporate available structural information.
arXiv Detail & Related papers (2023-03-28T00:23:23Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - The Sobolev Regularization Effect of Stochastic Gradient Descent [8.193914488276468]
We show that flat minima regularize the gradient of the model function, which explains the good performance of flat minima.
We also consider high-order moments of gradient noise, and show that Gradient Dascent (SGD) tends to impose constraints on these moments by a linear analysis of SGD around global minima.
arXiv Detail & Related papers (2021-05-27T21:49:21Z) - Identification of Latent Variables From Graphical Model Residuals [0.0]
We present a novel method to control for the latent space when estimating a DAG by iteratively deriving proxies for the latent space from the residuals of the inferred model.
We show that any improvement of prediction of an outcome is intrinsically capped and cannot rise beyond a certain limit as compared to the confounded model.
arXiv Detail & Related papers (2021-01-07T02:28:49Z) - Deep Neural Dynamic Bayesian Networks applied to EEG sleep spindles
modeling [0.0]
We propose a generative model for single-channel EEG that incorporates the constraints experts actively enforce during visual scoring.
We derive algorithms for exact, tractable inference as a special case of Generalized Expectation Maximization.
We validate the model on three public datasets and provide support that more complex models are able to surpass state-of-the-art detectors.
arXiv Detail & Related papers (2020-10-16T21:48:29Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.