MetaGen Blended RAG: Unlocking Zero-Shot Precision for Specialized Domain Question-Answering
- URL: http://arxiv.org/abs/2505.18247v3
- Date: Tue, 05 Aug 2025 17:28:07 GMT
- Title: MetaGen Blended RAG: Unlocking Zero-Shot Precision for Specialized Domain Question-Answering
- Authors: Kunal Sawarkar, Shivam R. Solanki, Abhilasha Mangal,
- Abstract summary: We introduce 'MetaGen Blended RAG', a novel enterprise search approach that enhances semantic retrievers.<n>By leveraging key concepts, topics, and acronyms, our method creates metadata-enriched semantic indexes and boosted hybrid queries.<n>On the biomedical PubMedQA dataset, MetaGen Blended RAG achieves 82% retrieval accuracy and 77% RAG accuracy, surpassing all prior zero-shot RAG benchmarks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) struggles with domain-specific enterprise datasets, often isolated behind firewalls and rich in complex, specialized terminology unseen by LLMs during pre-training. Semantic variability across domains like medicine, networking, or law hampers RAG's context precision, while fine-tuning solutions are costly, slow, and lack generalization as new data emerges. Achieving zero-shot precision with retrievers without fine-tuning still remains a key challenge. We introduce 'MetaGen Blended RAG', a novel enterprise search approach that enhances semantic retrievers through a metadata generation pipeline and hybrid query indexes using dense and sparse vectors. By leveraging key concepts, topics, and acronyms, our method creates metadata-enriched semantic indexes and boosted hybrid queries, delivering robust, scalable performance without fine-tuning. On the biomedical PubMedQA dataset, MetaGen Blended RAG achieves 82% retrieval accuracy and 77% RAG accuracy, surpassing all prior zero-shot RAG benchmarks and even rivaling fine-tuned models on that dataset, while also excelling on datasets like SQuAD and NQ. This approach redefines enterprise search using a new approach to building semantic retrievers with unmatched generalization across specialized domains.
Related papers
- RAG in the Wild: On the (In)effectiveness of LLMs with Mixture-of-Knowledge Retrieval Augmentation [45.679455112940175]
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by integrating external knowledge retrieved at inference time.<n>We evaluated RAG systems using MassiveDS, a large-scale datastore with mixture of knowledge, and identified critical limitations.
arXiv Detail & Related papers (2025-07-26T20:57:24Z) - ImpRAG: Retrieval-Augmented Generation with Implicit Queries [49.510101132093396]
ImpRAG is a query-free RAG system that integrates retrieval and generation into a unified model.<n>We show that ImpRAG achieves 3.6-11.5 improvements in exact match scores on unseen tasks with diverse formats.
arXiv Detail & Related papers (2025-06-02T21:38:21Z) - TechniqueRAG: Retrieval Augmented Generation for Adversarial Technique Annotation in Cyber Threat Intelligence Text [11.417612899344697]
Accurately identifying adversarial techniques in security texts is critical for effective cyber defense.<n>Existing methods face a fundamental trade-off: they either rely on generic models with limited domain precision or require resource-intensive pipelines.<n>We propose TechniqueRAG, a domain-specific retrieval-augmented generation (RAG) framework that bridges this gap by integrating off-the-shelf retrievers, instruction-tuned LLMs, and minimal text-technique pairs.
arXiv Detail & Related papers (2025-05-17T12:46:10Z) - SemCORE: A Semantic-Enhanced Generative Cross-Modal Retrieval Framework with MLLMs [70.79124435220695]
We propose a novel unified Semantic-enhanced generative Cross-mOdal REtrieval framework (SemCORE)<n>We first construct a Structured natural language IDentifier (SID) that effectively aligns target identifiers with generative models optimized for natural language comprehension and generation.<n>We then introduce a Generative Semantic Verification (GSV) strategy enabling fine-grained target discrimination.
arXiv Detail & Related papers (2025-04-17T17:59:27Z) - LevelRAG: Enhancing Retrieval-Augmented Generation with Multi-hop Logic Planning over Rewriting Augmented Searchers [24.01783076521377]
Retrieval-Augmented Generation (RAG) is a crucial method for mitigating hallucinations in Large Language Models (LLMs)<n>Existing RAG methods typically employ query rewriting to clarify the user intent and manage multi-hop logic, while using hybrid retrieval to expand search scope.<n>We introduce a high-level searcher that decomposes complex queries into atomic queries, independent of any retriever-specific optimizations.<n>To harness the strengths of sparse retrievers for precise keyword retrieval, we have developed a new sparse searcher that employs Lucene syntax to enhance retrieval accuracy.
arXiv Detail & Related papers (2025-02-25T12:09:16Z) - Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control [52.405085773954596]
Retrieval-Augmented Generation has emerged as a powerful approach to mitigate large language model hallucinations.<n>Existing RAG frameworks often apply retrieval indiscriminately,leading to inefficiencies-over-retrieving.<n>We introduce a novel user-controllable RAG framework that enables dynamic adjustment of the accuracy-cost trade-off.
arXiv Detail & Related papers (2025-02-17T18:56:20Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.<n>Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - QuIM-RAG: Advancing Retrieval-Augmented Generation with Inverted Question Matching for Enhanced QA Performance [1.433758865948252]
This work presents a novel architecture for building Retrieval-Augmented Generation (RAG) systems.<n>RAG architecture is constructed to generate responses from the target document.<n>We introduce QuIM-RAG, a novel approach for the retrieval mechanism in our system.
arXiv Detail & Related papers (2025-01-06T01:07:59Z) - Is Large-Scale Pretraining the Secret to Good Domain Generalization? [69.80606575323691]
Multi-Source Domain Generalization (DG) is the task of training on multiple source domains and achieving high classification performance on unseen target domains.<n>Recent methods combine robust features from web-scale pretrained backbones with new features learned from source data, and this has dramatically improved benchmark results.<n>We show that all evaluated DG methods struggle on DomainBed-OOP, while recent methods excel on DomainBed-IP.
arXiv Detail & Related papers (2024-12-03T21:43:11Z) - Failing Forward: Improving Generative Error Correction for ASR with Synthetic Data and Retrieval Augmentation [73.9145653659403]
We show that Generative Error Correction models struggle to generalize beyond the specific types of errors encountered during training.
We propose DARAG, a novel approach designed to improve GEC for ASR in in-domain (ID) and OOD scenarios.
Our approach is simple, scalable, and both domain- and language-agnostic.
arXiv Detail & Related papers (2024-10-17T04:00:29Z) - Deep Generic Representations for Domain-Generalized Anomalous Sound Detection [10.18337180909434]
We present textitGenRep, which utilizes generic feature representations from a robust, large-scale pre-trained feature extractor combined with kNN for domain-generalized ASD.
textitGenRep outperforms the best OE-based approach without a need for labeled data with an Official Score of 73.79% on the DCASE2023T2 Eval set.
arXiv Detail & Related papers (2024-09-08T09:20:30Z) - Blended RAG: Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers [0.0]
Retrieval-Augmented Generation (RAG) is a prevalent approach to infuse a private knowledge base of documents with Large Language Models (LLM) to build Generative Q&A (Question-Answering) systems.
We propose the 'Blended RAG' method of leveraging semantic search techniques, such as Vector indexes and Sparse indexes, blended with hybrid query strategies.
Our study achieves better retrieval results and sets new benchmarks for IR (Information Retrieval) datasets like NQ and TREC-COVID datasets.
arXiv Detail & Related papers (2024-03-22T17:13:46Z) - DoGE: Domain Reweighting with Generalization Estimation [42.32000165235568]
We propose DOmain reweighting with Generalization Estimation (DoGE)
In our experiments, we extensively show how DoGE improves the generalization of the base model to any target data mixture.
DoGE can effectively identify inter-domain dependencies, and consistently achieves better test perplexity on the target domain.
arXiv Detail & Related papers (2023-10-23T22:51:58Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - ERM++: An Improved Baseline for Domain Generalization [69.80606575323691]
Empirical Risk Minimization (ERM) can outperform most more complex Domain Generalization (DG) methods when properly tuned.<n>ERM++ improves DG performance by over 5% compared to prior ERM baselines.
arXiv Detail & Related papers (2023-04-04T17:31:15Z) - Improving Multi-Domain Generalization through Domain Re-labeling [31.636953426159224]
We study the important link between pre-specified domain labels and the generalization performance.
We introduce a general approach for multi-domain generalization, MulDEns, that uses an ERM-based deep ensembling backbone.
We show that MulDEns does not require tailoring the augmentation strategy or the training process specific to a dataset.
arXiv Detail & Related papers (2021-12-17T23:21:50Z) - META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification [68.39849081353704]
Domain generalizable (DG) person re-identification (ReID) aims to test across unseen domains without access to the target domain data at training time.
This paper presents a new approach called Mimicking Embedding via oThers' Aggregation (META) for DG ReID.
arXiv Detail & Related papers (2021-12-16T08:06:50Z) - Unsupervised and self-adaptative techniques for cross-domain person
re-identification [82.54691433502335]
Person Re-Identification (ReID) across non-overlapping cameras is a challenging task.
Unsupervised Domain Adaptation (UDA) is a promising alternative, as it performs feature-learning adaptation from a model trained on a source to a target domain without identity-label annotation.
In this paper, we propose a novel UDA-based ReID method that takes advantage of triplets of samples created by a new offline strategy.
arXiv Detail & Related papers (2021-03-21T23:58:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.