論文の概要: The end of radical concept nativism
- arxiv url: http://arxiv.org/abs/2505.18277v1
- Date: Fri, 23 May 2025 18:12:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:42.316434
- Title: The end of radical concept nativism
- Title(参考訳): 急進的概念ナチビズムの終焉
- Authors: Joshua S. Rule, Steven T. Piantadosi,
- Abstract要約: 人々が新しい概念を実際に学ぶには重要な意味がある、と私たちは主張する。
我々は、コンピュータ科学と情報理論のアイデアを使って、より科学的に生産的な方法で関連するアイデアを定式化する。
- 参考スコア(独自算出の注目度): 0.09577671849625957
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Though humans seem to be remarkable learners, arguments in cognitive science and philosophy of mind have long maintained that learning something fundamentally new is impossible. Specifically, Jerry Fodor's arguments for radical concept nativism hold that most, if not all, concepts are innate and that what many call concept learning never actually leads to the acquisition of new concepts. These arguments have deeply affected cognitive science, and many believe that the counterarguments to radical concept nativism have been either unsuccessful or only apply to a narrow class of concepts. This paper first reviews the features and limitations of prior arguments. We then identify three critical points - related to issues of expressive power, conceptual structure, and concept possession - at which the arguments in favor of radical concept nativism diverge from describing actual human cognition. We use ideas from computer science and information theory to formalize the relevant ideas in ways that are arguably more scientifically productive. We conclude that, as a result, there is an important sense in which people do indeed learn new concepts.
- Abstract(参考訳): 人間は驚くべき学習者のように思われるが、認知科学と心の哲学における議論は、根本的に新しいことを学ぶことは不可能である、と長年にわたって主張してきた。
特に、ジェリー・フォーダー(Jerry Fodor)の急進的概念ナチビズム(英語版)に対する主張は、すべてではなくとも、概念は生まれつきであり、多くの人が概念学習と呼ぶものは決して新しい概念の獲得に繋がらないというものである。
これらの議論は認知科学に深く影響を与えており、急進的な概念のナチビズムに対する反論は失敗したか、狭い概念のクラスにのみ適用されたと多くの人が信じている。
本稿ではまず,先行する議論の特徴と限界について概説する。
次に、表現力、概念構造、概念所有の問題に関連する3つの重要なポイントを特定し、過激な概念的ナチビズムを支持する議論は、実際の人間の認知を記述することから分岐する。
我々は、コンピュータ科学と情報理論のアイデアを使って、より科学的に生産的な方法で関連するアイデアを定式化する。
結果として、人々が新しい概念を実際に学ぶことには重要な意味がある、と結論付けます。
関連論文リスト
- Neuro-Symbolic Concepts [72.94541757514396]
本稿では、連続的に学習し、柔軟に推論できるエージェントを構築するための概念中心のパラダイムについて述べる。
概念中心のエージェントは、ニューロシンボリックな概念の語彙を利用する。
このフレームワークには、データ効率、構成一般化、連続学習、ゼロショット転送など、いくつかの利点がある。
論文 参考訳(メタデータ) (2025-05-09T17:02:51Z) - Conceptual and Unbiased Reasoning in Language Models [98.90677711523645]
本稿では,抽象的質問に対する概念的推論をモデルに強制する,新しい概念化フレームワークを提案する。
既存の大規模言語モデルは概念的推論では不足しており、様々なベンチマークでは9%から28%に低下している。
ハイレベルな抽象的推論が不偏で一般化可能な意思決定の鍵となるので、モデルがどのように改善できるかについて議論する。
論文 参考訳(メタデータ) (2024-03-30T00:53:53Z) - A Brain-inspired Computational Model for Human-like Concept Learning [12.737696613208632]
この研究は、スパイクニューラルネットワークに基づく概念学習のための人間のような計算モデルを開発する。
多様な情報源によって引き起こされる課題と2つの概念表現の非バランスな次元性に効果的に対処することにより、この研究は人間のような概念表現を達成することに成功した。
論文 参考訳(メタデータ) (2024-01-12T09:32:51Z) - An Enactivist-Inspired Mathematical Model of Cognition [5.8010446129208155]
我々は、関連する文献で慎重に確認した5つの基本的なエノクティビズム認知科学のテレットを定式化する。
次に、これらの実践主義的信条に従う認知システムについて話すための数学的枠組みを開発する。
論文 参考訳(メタデータ) (2022-06-10T13:03:47Z) - Acquiring and Modelling Abstract Commonsense Knowledge via Conceptualization [49.00409552570441]
本研究では,コモンセンス推論における概念化の役割について検討し,人間の概念化を再現する枠組みを定式化する。
ATOMIC は大規模な人為的注釈付き CKG であり,この枠組みを分類プロベースで支援している。
論文 参考訳(メタデータ) (2022-06-03T12:24:49Z) - A Quantitative Symbolic Approach to Individual Human Reasoning [0.0]
文献から得られた知見を,論理的枠組みの中で認知的原理として定式化され,理論的推論の定量的概念を確立できることを示す。
非単調推論と計算機科学の技法、すなわち、解集合プログラミング(ASP)と呼ばれる解法パラダイムを用いる。
最後に、ASP.NETの可視性推論を使って、既存の実験の効果をテストし、異なる多数派反応を説明できます。
論文 参考訳(メタデータ) (2022-05-10T16:43:47Z) - HINT: Hierarchical Neuron Concept Explainer [35.07575535848492]
人類の階層的認知プロセスに触発された階層的概念を研究する。
本稿では,ニューロンと階層概念の双方向関係を効果的に構築するために,階層型ニューロンコンセプT説明器(HINT)を提案する。
HINTは、概念の暗黙的な階層的関係がニューロンに埋め込まれているかどうかを体系的に定量的に研究することを可能にする。
論文 参考訳(メタデータ) (2022-03-27T03:25:36Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
概念活性化ベクトル(Concept Activation Vectors, CAV)のクラスを含む概念的説明を紹介する。
次に、自動的に概念を抽出するアプローチと、それらの注意事項に対処するアプローチについて議論する。
最後に、このような概念に基づく説明が、合成設定や実世界の応用において有用であることを示すケーススタディについて論じる。
論文 参考訳(メタデータ) (2022-02-25T01:27:31Z) - Formalising Concepts as Grounded Abstractions [68.24080871981869]
このレポートは、表現学習が生データから概念を誘導する方法を示しています。
このレポートの主な技術的目標は、表現学習のテクニックが概念空間の格子理論的定式化とどのように結婚できるかを示すことである。
論文 参考訳(メタデータ) (2021-01-13T15:22:01Z) - The Evolution of Concept-Acquisition based on Developmental Psychology [4.416484585765028]
知識に基づく人工知能システムの性能向上の鍵は、豊富な意味を持つ概念システムである。
概念を表現し、概念システムを構築する新しい方法を見つけることは、多くのインテリジェントシステムの性能を大幅に向上させる。
発達心理学は、人間の行動レベルで概念獲得の過程を注意深く観察する。
論文 参考訳(メタデータ) (2020-11-26T01:57:24Z) - Bongard-LOGO: A New Benchmark for Human-Level Concept Learning and
Reasoning [78.13740873213223]
ボナード問題(BP)は、インテリジェントシステムにおける視覚認知へのインスピレーションとして導入された。
我々は人間レベルの概念学習と推論のための新しいベンチマークBongard-LOGOを提案する。
論文 参考訳(メタデータ) (2020-10-02T03:19:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。