Dynamics of Affective States During Takeover Requests in Conditionally Automated Driving Among Older Adults with and without Cognitive Impairment
- URL: http://arxiv.org/abs/2505.18416v1
- Date: Fri, 23 May 2025 22:48:20 GMT
- Title: Dynamics of Affective States During Takeover Requests in Conditionally Automated Driving Among Older Adults with and without Cognitive Impairment
- Authors: Gelareh Hajian, Ali Abedi, Bing Ye, Jennifer Campos, Alex Mihailidis,
- Abstract summary: cognitive decline can compromise driving safety and often lead to premature driving cessation.<n> Conditionally automated vehicles require drivers to take over control when automation reaches its operational limits.<n>This study investigated affective responses, measured via facial expression analysis of valence and arousal, during takeover requests (TORs) among cognitively healthy older adults and those with cognitive impairment.
- Score: 1.8189845665076032
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Driving is a key component of independence and quality of life for older adults. However, cognitive decline associated with conditions such as mild cognitive impairment and dementia can compromise driving safety and often lead to premature driving cessation. Conditionally automated vehicles, which require drivers to take over control when automation reaches its operational limits, offer a potential assistive solution. However, their effectiveness depends on the driver's ability to respond to takeover requests (TORs) in a timely and appropriate manner. Understanding emotional responses during TORs can provide insight into drivers' engagement, stress levels, and readiness to resume control, particularly in cognitively vulnerable populations. This study investigated affective responses, measured via facial expression analysis of valence and arousal, during TORs among cognitively healthy older adults and those with cognitive impairment. Facial affect data were analyzed across different road geometries and speeds to evaluate within- and between-group differences in affective states. Within-group comparisons using the Wilcoxon signed-rank test revealed significant changes in valence and arousal during TORs for both groups. Cognitively healthy individuals showed adaptive increases in arousal under higher-demand conditions, while those with cognitive impairment exhibited reduced arousal and more positive valence in several scenarios. Between-group comparisons using the Mann-Whitney U test indicated that cognitively impaired individuals displayed lower arousal and higher valence than controls across different TOR conditions. These findings suggest reduced emotional response and awareness in cognitively impaired drivers, highlighting the need for adaptive vehicle systems that detect affective states and support safe handovers for vulnerable users.
Related papers
- Driving as a Diagnostic Tool: Scenario-based Cognitive Assessment in Older Drivers From Driving Video [6.66498412613475]
This research aims to extract "digital fingerprints" that correlate with functional decline and clinical features of Alzheimer's disease (AD) and mild cognitive impairment (MCI)<n>We propose a framework that uses large vision models and naturalistic driving videos to analyze driver behavior, classify cognitive status and predict disease progression.
arXiv Detail & Related papers (2025-07-07T20:30:00Z) - Associating transportation planning-related measures with Mild Cognitive Impairment [6.66498412613475]
We computed certain variables that reflect daily driving habits of older drivers in Nebraska using geohashing.<n>The variables were then analyzed using a two-fold approach involving data visualization and machine learning models.<n>The C5.0 model demonstrated robust and stable performance with a median recall of 74%, indicating that our methodology was able to identify cognitive impairment in drivers 74% of the time correctly.
arXiv Detail & Related papers (2025-04-12T00:52:25Z) - Automatic detection of cognitive impairment in elderly people using an entertainment chatbot with Natural Language Processing capabilities [8.032202552952299]
We present an intelligent conversational system for entertaining elderly people with news of their interest that monitors cognitive impairment transparently.
We create dialogue flows automatically from updated news items using Natural Language Generation techniques.
The system infers the gold standard of the answers to the questions, so it can assess cognitive capabilities automatically.
arXiv Detail & Related papers (2024-05-28T19:17:48Z) - In-vehicle Sensing and Data Analysis for Older Drivers with Mild
Cognitive Impairment [0.8426358786287627]
The objectives of this paper include designing low-cost in-vehicle sensing hardware capable of obtaining high-precision positioning and telematics data.
Our statistical analysis comparing drivers with mild cognitive impairment (MCI) to those without reveals that those with MCI exhibit smoother and safer driving patterns.
Our Random Forest models identified the number of night trips, number of trips, and education as the most influential factors in our data evaluation.
arXiv Detail & Related papers (2023-11-15T15:47:24Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
Psychiatric patients' passive activity monitoring is crucial to detect behavioural shifts in real-time.
Sleep Activity Recognition constitutes a behavioural marker to portray patients' activity cycles.
Mobile passively sensed data captured from smartphones constitute an excellent alternative to profile patients' biorhythm.
arXiv Detail & Related papers (2022-11-08T17:29:40Z) - What's on your mind? A Mental and Perceptual Load Estimation Framework
towards Adaptive In-vehicle Interaction while Driving [55.41644538483948]
We analyze the effects of mental workload and perceptual load on psychophysiological dimensions.
We classify the mental and perceptual load levels through the fusion of these measurements.
We report up to 89% mental workload classification accuracy and provide a real-time minimally-intrusive solution.
arXiv Detail & Related papers (2022-08-10T21:19:49Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
We introduce epsilon-illusory, a novel form of adversarial attack on sequential decision-makers.
Compared to existing attacks, we empirically find epsilon-illusory to be significantly harder to detect with automated methods.
Our findings suggest the need for better anomaly detectors, as well as effective hardware- and system-level defenses.
arXiv Detail & Related papers (2022-07-20T19:49:09Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - An active approach towards monitoring and enhancing drivers'
capabilities -- the ADAM cogtec solution [1.0312968200748118]
Driver's cognitive ability at a given moment is the most elusive variable in assessing driver's safety.
We develop a closed loop-method in which driver's ocular responses to visual probing were recorded.
Machine-learning-algorithms were trained on ocular responses of vigilant condition and were able to detect decrease in capability due fatigue and substance abuse.
arXiv Detail & Related papers (2022-04-05T07:46:07Z) - Designing A Clinically Applicable Deep Recurrent Model to Identify
Neuropsychiatric Symptoms in People Living with Dementia Using In-Home
Monitoring Data [52.40058724040671]
Agitation is one of the neuropsychiatric symptoms with high prevalence in dementia.
Detecting agitation episodes can assist in providing People Living with Dementia (PLWD) with early and timely interventions.
This preliminary study presents a supervised learning model to analyse the risk of agitation in PLWD using in-home monitoring data.
arXiv Detail & Related papers (2021-10-19T11:45:01Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z) - Examining the Effects of Emotional Valence and Arousal on Takeover
Performance in Conditionally Automated Driving [14.987259704464119]
In conditionally automated driving, drivers have difficulty in takeover transitions as they become increasingly decoupled from the operational level of driving.
This study examined the effects of emotional valence and arousal on drivers takeover timeliness and quality in conditionally automated driving.
arXiv Detail & Related papers (2020-01-13T19:28:15Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.