On Minimax Estimation of Parameters in Softmax-Contaminated Mixture of Experts
- URL: http://arxiv.org/abs/2505.18455v1
- Date: Sat, 24 May 2025 01:30:46 GMT
- Title: On Minimax Estimation of Parameters in Softmax-Contaminated Mixture of Experts
- Authors: Fanqi Yan, Huy Nguyen, Dung Le, Pedram Akbarian, Nhat Ho, Alessandro Rinaldo,
- Abstract summary: We study the convergence rates of the maximum likelihood estimator of gating and prompt parameters.<n>We find that the estimability of these parameters is compromised when the prompt acquires overlapping knowledge with the pre-trained model.
- Score: 66.39976432286905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The softmax-contaminated mixture of experts (MoE) model is deployed when a large-scale pre-trained model, which plays the role of a fixed expert, is fine-tuned for learning downstream tasks by including a new contamination part, or prompt, functioning as a new, trainable expert. Despite its popularity and relevance, the theoretical properties of the softmax-contaminated MoE have remained unexplored in the literature. In the paper, we study the convergence rates of the maximum likelihood estimator of gating and prompt parameters in order to gain insights into the statistical properties and potential challenges of fine-tuning with a new prompt. We find that the estimability of these parameters is compromised when the prompt acquires overlapping knowledge with the pre-trained model, in the sense that we make precise by formulating a novel analytic notion of distinguishability. Under distinguishability of the pre-trained and prompt models, we derive minimax optimal estimation rates for all the gating and prompt parameters. By contrast, when the distinguishability condition is violated, these estimation rates become significantly slower due to their dependence on the prompt convergence rate to the pre-trained model. Finally, we empirically corroborate our theoretical findings through several numerical experiments.
Related papers
- Convergence Rates for Softmax Gating Mixture of Experts [78.3687645289918]
Mixture of experts (MoE) has emerged as an effective framework to advance the efficiency and scalability of machine learning models.<n>Central to the success of MoE is an adaptive softmax gating mechanism which takes responsibility for determining the relevance of each expert to a given input and then dynamically assigning experts their respective weights.<n>We perform a convergence analysis of parameter estimation and expert estimation under the MoE equipped with the standard softmax gating or its variants, including a dense-to-sparse gating and a hierarchical softmax gating.
arXiv Detail & Related papers (2025-03-05T06:11:24Z) - Understanding Expert Structures on Minimax Parameter Estimation in Contaminated Mixture of Experts [24.665178287368974]
We conduct the convergence analysis of parameter estimation in the contaminated mixture of experts.<n>This model is motivated from the prompt learning problem where ones utilize prompts, which can be formulated as experts, to fine-tune a large-scale pre-trained model for learning downstream tasks.
arXiv Detail & Related papers (2024-10-16T05:52:51Z) - Sigmoid Gating is More Sample Efficient than Softmax Gating in Mixture of Experts [78.3687645289918]
We show that the sigmoid gating function enjoys a higher sample efficiency than the softmax gating for the statistical task of expert estimation.
We find that experts formulated as feed-forward networks with commonly used activation such as ReLU and GELU enjoy faster convergence rates under the sigmoid gating.
arXiv Detail & Related papers (2024-05-22T21:12:34Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
We investigate the performance of the least squares estimators (LSE) under a deterministic MoE model.
We establish a condition called strong identifiability to characterize the convergence behavior of various types of expert functions.
Our findings have important practical implications for expert selection.
arXiv Detail & Related papers (2024-02-05T12:31:18Z) - Is Temperature Sample Efficient for Softmax Gaussian Mixture of Experts? [27.924615931679757]
We explore the impacts of a dense-to-sparse gating mixture of experts (MoE) on the maximum likelihood estimation under the MoE.
We propose using a novel activation dense-to-sparse gate, which routes the output of a linear layer to an activation function before delivering them to the softmax function.
arXiv Detail & Related papers (2024-01-25T01:09:09Z) - In Defense of Softmax Parametrization for Calibrated and Consistent
Learning to Defer [27.025808709031864]
It has been theoretically shown that popular estimators for learning to defer parameterized with softmax provide unbounded estimates for the likelihood of deferring.
We show that the cause of the miscalibrated and unbounded estimator in prior literature is due to the symmetric nature of the surrogate losses used and not due to softmax.
We propose a novel statistically consistent asymmetric softmax-based surrogate loss that can produce valid estimates without the issue of unboundedness.
arXiv Detail & Related papers (2023-11-02T09:15:52Z) - A General Theory for Softmax Gating Multinomial Logistic Mixture of Experts [28.13187489224953]
We propose a novel class of modified softmax gating functions which transform the input before delivering them to the gating functions.
As a result, the previous interaction disappears and the parameter estimation rates are significantly improved.
arXiv Detail & Related papers (2023-10-22T05:32:19Z) - Monotonicity and Double Descent in Uncertainty Estimation with Gaussian
Processes [52.92110730286403]
It is commonly believed that the marginal likelihood should be reminiscent of cross-validation metrics and that both should deteriorate with larger input dimensions.
We prove that by tuning hyper parameters, the performance, as measured by the marginal likelihood, improves monotonically with the input dimension.
We also prove that cross-validation metrics exhibit qualitatively different behavior that is characteristic of double descent.
arXiv Detail & Related papers (2022-10-14T08:09:33Z) - Improving Maximum Likelihood Training for Text Generation with Density
Ratio Estimation [51.091890311312085]
We propose a new training scheme for auto-regressive sequence generative models, which is effective and stable when operating at large sample space encountered in text generation.
Our method stably outperforms Maximum Likelihood Estimation and other state-of-the-art sequence generative models in terms of both quality and diversity.
arXiv Detail & Related papers (2020-07-12T15:31:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.