論文の概要: Adapting Novelty towards Generating Antigens for Antivirus systems
- arxiv url: http://arxiv.org/abs/2505.18520v1
- Date: Sat, 24 May 2025 05:33:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-03 13:58:08.818791
- Title: Adapting Novelty towards Generating Antigens for Antivirus systems
- Title(参考訳): 新規な抗ウイルス系抗原の創出への適応
- Authors: Ritwik Murali, C Shunmuga Velayutham,
- Abstract要約: 本稿では,入力マルウェアの多様かつ潜在的な変種を生成するための汎用アセンブリソースコードベースフレームワークを提案する。
このフレームワークは、人気のある抗ウイルススキャナーの98%以上を回避している。
このフレームワークによって進化したマルウェアの変種は、マルウェア分析エンジンがマルウェア検出アルゴリズムを改善するのを助ける抗原として機能する。
- 参考スコア(独自算出の注目度): 4.8342038441006805
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: It is well known that anti-malware scanners depend on malware signatures to identify malware. However, even minor modifications to malware code structure results in a change in the malware signature thus enabling the variant to evade detection by scanners. Therefore, there exists the need for a proactively generated malware variant dataset to aid detection of such diverse variants by automated antivirus scanners. This paper proposes and demonstrates a generic assembly source code based framework that facilitates any evolutionary algorithm to generate diverse and potential variants of an input malware, while retaining its maliciousness, yet capable of evading antivirus scanners. Generic code transformation functions and a novelty search supported quality metric have been proposed as components of the framework to be used respectively as variation operators and fitness function, for evolutionary algorithms. The results demonstrate the effectiveness of the framework in generating diverse variants and the generated variants have been shown to evade over 98% of popular antivirus scanners. The malware variants evolved by the framework can serve as antigens to assist malware analysis engines to improve their malware detection algorithms.
- Abstract(参考訳): マルウェアスキャナーがマルウェアを識別するためにマルウェアシグネチャに依存することはよく知られている。
しかし、マルウェアコード構造に小さな変更を加えると、マルウェアの署名が変更され、スキャナーによる検出が回避される。
したがって、自動化されたアンチウイルススキャナーによるこのような多様な変異の検出を支援するために、積極的に生成されたマルウェア変種データセットが必要である。
本稿では, 汎用的な組立ソースコードベースのフレームワークを提案し, 悪意を保ちながら, アンチウイルススキャナーを回避しながら, 進化的アルゴリズムにより, 入力マルウェアの多様かつ潜在的な変種を生成できるようにし, 汎用的な組立ソースコードベースフレームワークを提案する。
遺伝的コード変換関数と新規検索支援品質指標は、進化アルゴリズムにおいて、それぞれ変分演算子と適合関数として使用されるフレームワークの構成要素として提案されている。
その結果, 多様な変異体を産生するフレームワークの有効性が示され, 生成した変異体は, 一般的な抗ウイルススキャナーの98%以上を回避していることがわかった。
このフレームワークによって進化したマルウェアの変種は、マルウェア分析エンジンがマルウェア検出アルゴリズムを改善するのを助ける抗原として機能する。
関連論文リスト
- Understanding crypter-as-a-service in a popular underground marketplace [51.328567400947435]
Cryptersは、ターゲットバイナリを変換することで、アンチウイルス(AV)アプリケーションからの検出を回避できるソフトウェアの一部です。
シークレット・アズ・ア・サービスモデルは,検出機構の高度化に対応して人気を博している。
本論文は,シークレット・アズ・ア・サービスに特化したオンライン地下市場に関する最初の研究である。
論文 参考訳(メタデータ) (2024-05-20T08:35:39Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Multi-view Representation Learning from Malware to Defend Against
Adversarial Variants [11.45498656419419]
本稿では,DLをベースとしたマルウェア検出装置の敵的変異に対する堅牢性を向上させるための,新たな多視点学習フレームワークであるAdversarially Robust Multiview Malware Defense (ARMD)を提案する。
6つの一般的なマルウェアカテゴリにわたる3つの有名なオープンソースのディープラーニングベースのマルウェア検出実験は、ARMDがこれらのマルウェア検出装置上で最大7倍の敵の堅牢性を向上できることを示している。
論文 参考訳(メタデータ) (2022-10-25T22:25:50Z) - Self-Supervised Vision Transformers for Malware Detection [0.0]
本稿では、視覚変換器(ViT)アーキテクチャに基づくマルウェア検出のための自己超越型ディープラーニングモデルであるSHERLOCKを提案する。
提案手法は, マクロF1スコアが.497, 491で, マルチクラスマルウェア分類における最先端技術よりも優れている。
論文 参考訳(メタデータ) (2022-08-15T07:49:58Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - Evading Malware Classifiers via Monte Carlo Mutant Feature Discovery [23.294653273180472]
悪意のあるアクターが代理モデルを訓練して、インスタンスが誤分類される原因となるバイナリ変異を発見する方法を示す。
そして、変異したマルウェアが、抗ウイルスAPIの代わりとなる被害者モデルに送られ、検出を回避できるかどうかをテストする。
論文 参考訳(メタデータ) (2021-06-15T03:31:02Z) - Binary Black-box Evasion Attacks Against Deep Learning-based Static
Malware Detectors with Adversarial Byte-Level Language Model [11.701290164823142]
MalRNNは、制限なく回避可能なマルウェアバリアントを自動的に生成する新しいアプローチです。
MalRNNは、3つの最近のディープラーニングベースのマルウェア検出器を効果的に回避し、現在のベンチマークメソッドを上回ります。
論文 参考訳(メタデータ) (2020-12-14T22:54:53Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - MDEA: Malware Detection with Evolutionary Adversarial Learning [16.8615211682877]
MDEA(Adversarial Malware Detection)モデルであるMDEAは、進化的最適化を使用して攻撃サンプルを作成し、ネットワークを回避攻撃に対して堅牢にする。
進化したマルウェアサンプルでモデルを再トレーニングすることで、その性能は大幅に改善される。
論文 参考訳(メタデータ) (2020-02-09T09:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。