PacTrain: Pruning and Adaptive Sparse Gradient Compression for Efficient Collective Communication in Distributed Deep Learning
- URL: http://arxiv.org/abs/2505.18563v1
- Date: Sat, 24 May 2025 07:06:36 GMT
- Title: PacTrain: Pruning and Adaptive Sparse Gradient Compression for Efficient Collective Communication in Distributed Deep Learning
- Authors: Yisu Wang, Ruilong Wu, Xinjiao Li, Dirk Kutscher,
- Abstract summary: PacTrain is a novel framework that accelerates distributed training by combining pruning with sparse gradient compression.<n>We show that the PacTrain compression scheme achieves a near-optimal compression strategy while remaining compatible with the all-reduce primitive.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale deep neural networks (DNN) exhibit excellent performance for various tasks. As DNNs and datasets grow, distributed training becomes extremely time-consuming and demands larger clusters. A main bottleneck is the resulting gradient aggregation overhead. While gradient compression and sparse collective communication techniques are commonly employed to alleviate network load, many gradient compression schemes do not achieve acceleration of the training process while also preserving accuracy. This paper introduces PacTrain, a novel framework that accelerates distributed training by combining pruning with sparse gradient compression. Active pruning of the neural network makes the model weights and gradients sparse. By ensuring the global knowledge of the gradient sparsity among all distributed training workers, we can perform lightweight compression communication without harming accuracy. We show that the PacTrain compression scheme achieves a near-optimal compression strategy while remaining compatible with the all-reduce primitive. Experimental evaluations show that PacTrain improves training throughput by 1.25 to 8.72 times compared to state-of-the-art compression-enabled systems for representative vision and language models training tasks under bandwidth-constrained conditions.
Related papers
- Protocol Models: Scaling Decentralized Training with Communication-Efficient Model Parallelism [59.79227116582264]
Scaling models has led to significant advancements in deep learning, but training these models in decentralized settings remains challenging.<n>We propose a novel compression algorithm that compresses both forward and backward passes, enabling up to 99% compression with no convergence degradation.
arXiv Detail & Related papers (2025-06-02T02:19:22Z) - LoCo: Low-Bit Communication Adaptor for Large-scale Model Training [63.040522637816906]
Low-bit communication often degrades training quality due to compression information loss.<n>We propose Low-bit Communication Adaptor (LoCo), which compensates local local GPU nodes before, without compromising quality.<n> Experimental results show that across moving large-scale training model frameworks like Megatron-LM and PyTorchs FSDP, LoCo significantly improves compression communication efficiency.
arXiv Detail & Related papers (2024-07-05T13:01:36Z) - Accelerating Distributed Deep Learning using Lossless Homomorphic
Compression [17.654138014999326]
We introduce a novel compression algorithm that effectively merges worker-level compression with in-network aggregation.
We show up to a 6.33$times$ improvement in aggregation throughput and a 3.74$times$ increase in per-iteration training speed.
arXiv Detail & Related papers (2024-02-12T09:57:47Z) - ScaleCom: Scalable Sparsified Gradient Compression for
Communication-Efficient Distributed Training [74.43625662170284]
Large-scale distributed training of Deep Neural Networks (DNNs) on state-of-the-art platforms is expected to be severely communication constrained.
We propose a new compression technique that leverages similarity in the gradient distribution amongst learners to provide significantly improved scalability.
We experimentally demonstrate that ScaleCom has small overheads, directly reduces gradient traffic and provides high compression rates (65-400X) and excellent scalability (up to 64 learners and 8-12X larger batch sizes over standard training) without significant accuracy loss.
arXiv Detail & Related papers (2021-04-21T02:22:10Z) - Efficient Distributed Auto-Differentiation [22.192220404846267]
gradient-based algorithms for training large deep neural networks (DNNs) are communication-heavy.
We introduce a surprisingly simple statistic for training distributed DNNs that is more communication-friendly than the gradient.
The process provides the flexibility of averaging gradients during backpropagation, enabling novel flexible training schemas.
arXiv Detail & Related papers (2021-02-18T21:46:27Z) - An Efficient Statistical-based Gradient Compression Technique for
Distributed Training Systems [77.88178159830905]
Sparsity-Inducing Distribution-based Compression (SIDCo) is a threshold-based sparsification scheme that enjoys similar threshold estimation quality to deep gradient compression (DGC)
Our evaluation shows SIDCo speeds up training by up to 41:7%, 7:6%, and 1:9% compared to the no-compression baseline, Topk, and DGC compressors, respectively.
arXiv Detail & Related papers (2021-01-26T13:06:00Z) - Sparse Communication for Training Deep Networks [56.441077560085475]
Synchronous gradient descent (SGD) is the most common method used for distributed training of deep learning models.
In this algorithm, each worker shares its local gradients with others and updates the parameters using the average gradients of all workers.
We study several compression schemes and identify how three key parameters affect the performance.
arXiv Detail & Related papers (2020-09-19T17:28:11Z) - Domain-specific Communication Optimization for Distributed DNN Training [10.781867496460837]
We present DLCP, a novel solution exploiting the domain-specific properties of deep learning to optimize communication overhead of DNN training in a fine-grained manner.
It exploits em bounded loss tolerance of SGD-based training to improve tail communication latency which cannot be avoided purely through gradient compression.
It then performs fine-grained packet-level prioritization and dropping, as opposed to flow-level scheduling, based on layers and magnitudes of gradients to further speedup model convergence without affecting accuracy.
arXiv Detail & Related papers (2020-08-16T09:53:21Z) - PowerGossip: Practical Low-Rank Communication Compression in
Decentralized Deep Learning [62.440827696638664]
We introduce a simple algorithm that directly compresses the model differences between neighboring workers.
Inspired by the PowerSGD for centralized deep learning, this algorithm uses power steps to maximize the information transferred per bit.
arXiv Detail & Related papers (2020-08-04T09:14:52Z) - Is Network the Bottleneck of Distributed Training? [36.925680383195356]
We take a first-principles approach to measure and analyze the network performance of distributed training.
We find that the network is running at low utilization and that if the network can be fully utilized, distributed training can achieve a scaling factor of close to one.
arXiv Detail & Related papers (2020-06-17T19:00:31Z) - Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle [117.95823660228537]
We propose a novel structured sparsification method for efficient network compression.
The proposed method automatically induces structured sparsity on the convolutional weights.
We also address the problem of inter-group communication with a learnable channel shuffle mechanism.
arXiv Detail & Related papers (2020-02-19T12:03:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.