Benchmarking and Rethinking Knowledge Editing for Large Language Models
- URL: http://arxiv.org/abs/2505.18690v1
- Date: Sat, 24 May 2025 13:32:03 GMT
- Title: Benchmarking and Rethinking Knowledge Editing for Large Language Models
- Authors: Guoxiu He, Xin Song, Futing Wang, Aixin Sun,
- Abstract summary: Knowledge editing aims to update embedded knowledge within Large Language Models (LLMs)<n>Existing approaches, whether through parameter modification or external memory integration, often suffer from inconsistent evaluation objectives and experimental setups.<n>This study offers new insights into the limitations of current knowledge editing methods and highlights the potential of context-based reasoning as a more robust alternative.
- Score: 34.80161437154527
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge editing aims to update the embedded knowledge within Large Language Models (LLMs). However, existing approaches, whether through parameter modification or external memory integration, often suffer from inconsistent evaluation objectives and experimental setups. To address this gap, we conduct a comprehensive benchmarking study. In addition to fact-level datasets, we introduce more complex event-based datasets and general-purpose datasets drawn from other tasks. Our evaluation covers both instruction-tuned and reasoning-oriented LLMs, under a realistic autoregressive inference setting rather than teacher-forced decoding. Beyond single-edit assessments, we also evaluate multi-edit scenarios to better reflect practical demands. We employ four evaluation dimensions, including portability, and compare all recent methods against a simple and straightforward baseline named Selective Contextual Reasoning (SCR). Empirical results reveal that parameter-based editing methods perform poorly under realistic conditions. In contrast, SCR consistently outperforms them across all settings. This study offers new insights into the limitations of current knowledge editing methods and highlights the potential of context-based reasoning as a more robust alternative.
Related papers
- OpenUnlearning: Accelerating LLM Unlearning via Unified Benchmarking of Methods and Metrics [101.78963920333342]
We introduce OpenUnlearning, a standardized framework for benchmarking large language models (LLMs) unlearning methods and metrics.<n>OpenUnlearning integrates 9 unlearning algorithms and 16 diverse evaluations across 3 leading benchmarks.<n>We also benchmark diverse unlearning methods and provide a comparative analysis against an extensive evaluation suite.
arXiv Detail & Related papers (2025-06-14T20:16:37Z) - Towards Efficient and Effective Alignment of Large Language Models [7.853945494882636]
Large language models (LLMs) exhibit remarkable capabilities across diverse tasks, yet aligning them efficiently and effectively with human expectations remains a critical challenge.<n>This thesis advances LLM alignment by introducing novel methodologies in data collection, training, and evaluation.
arXiv Detail & Related papers (2025-06-11T02:08:52Z) - ScEdit: Script-based Assessment of Knowledge Editing [13.628279976661934]
Knowledge Editing (KE) has gained increasing attention, yet current KE tasks remain relatively simple.<n>We introduce a novel script-based benchmark -- ScEdit (Script-based Knowledge Editing Benchmark) -- which encompasses both counterfactual and temporal edits.<n>We observe that all KE methods exhibit a drop in performance on established metrics and face challenges on text-level metrics, indicating a challenging task.
arXiv Detail & Related papers (2025-05-29T09:42:25Z) - Knowledge Updating? No More Model Editing! Just Selective Contextual Reasoning [38.018263569983226]
We provide an evaluation of ten model editing methods along four dimensions: reliability, generalization, locality, and portability.<n>We then propose a straightforward method called Selective Contextual Reasoning (SCR) for knowledge updating.
arXiv Detail & Related papers (2025-03-07T08:04:25Z) - The Mirage of Model Editing: Revisiting Evaluation in the Wild [70.17413507444704]
We study the effectiveness of model editing in question answering applications.<n>Our single editing experiments indicate that current editing methods perform substantially worse than previously reported.<n>Our analysis provides a fundamental reexamination of both the real-world applicability of existing model editing methods and their evaluation practices.
arXiv Detail & Related papers (2025-02-16T15:57:55Z) - StructTest: Benchmarking LLMs' Reasoning through Compositional Structured Outputs [78.84060166851805]
StructTest is a novel benchmark that evaluates large language models (LLMs) on their ability to follow compositional instructions and generate structured outputs.<n> Assessments are conducted deterministically using a rule-based evaluator, which can be easily extended to new tasks and datasets.<n>We demonstrate that StructTest remains challenging even for top-performing models like Deepseek-V3/R1 and GPT-4o.
arXiv Detail & Related papers (2024-12-23T22:08:40Z) - ComprehendEdit: A Comprehensive Dataset and Evaluation Framework for Multimodal Knowledge Editing [27.034072044001736]
Large multimodal language models (MLLMs) have revolutionized natural language processing and visual understanding.<n>Current knowledge editing evaluations are limited in scope and potentially biased.<n>We introduce ComprehendEdit, a comprehensive benchmark comprising eight diverse tasks from multiple datasets.
arXiv Detail & Related papers (2024-12-17T11:41:49Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [70.65910069412944]
Click-Through Rate (CTR) prediction holds a paramount position in recommender systems.<n>Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs)<n>We propose textbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA) for CTR prediction.
arXiv Detail & Related papers (2024-05-17T07:43:25Z) - Editing Large Language Models: Problems, Methods, and Opportunities [51.903537096207]
This paper embarks on a deep exploration of the problems, methods, and opportunities related to model editing for LLMs.
We provide an exhaustive overview of the task definition and challenges associated with model editing, along with an in-depth empirical analysis of the most progressive methods currently at our disposal.
Our objective is to provide valuable insights into the effectiveness and feasibility of each editing technique, thereby assisting the community in making informed decisions on the selection of the most appropriate method for a specific task or context.
arXiv Detail & Related papers (2023-05-22T16:00:00Z) - EditEval: An Instruction-Based Benchmark for Text Improvements [73.5918084416016]
This work presents EditEval: An instruction-based, benchmark and evaluation suite for automatic evaluation of editing capabilities.
We evaluate several pre-trained models, which shows that InstructGPT and PEER perform the best, but that most baselines fall below the supervised SOTA.
Our analysis shows that commonly used metrics for editing tasks do not always correlate well, and that optimization for prompts with the highest performance does not necessarily entail the strongest robustness to different models.
arXiv Detail & Related papers (2022-09-27T12:26:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.