論文の概要: A General Knowledge Injection Framework for ICD Coding
- arxiv url: http://arxiv.org/abs/2505.18708v1
- Date: Sat, 24 May 2025 13:57:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:42.608714
- Title: A General Knowledge Injection Framework for ICD Coding
- Title(参考訳): ICD符号化のための一般知識注入フレームワーク
- Authors: Xu Zhang, Kun Zhang, Wenxin Ma, Rongsheng Wang, Chenxu Wu, Yingtai Li, S. Kevin Zhou,
- Abstract要約: GKI-ICDは、ICD記述(ICD Description)、ICD同期(ICD Synonym)、ICD階層(ICD Hierarchy)という3つの重要な種類の知識を統合する、新しい一般的な知識注入フレームワークである。
相違点と相補点の両方を示す上記の知識を包括的に活用することで、ICD符号化性能を効果的に向上させることができる。
- 参考スコア(独自算出の注目度): 18.07070206360561
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: ICD Coding aims to assign a wide range of medical codes to a medical text document, which is a popular and challenging task in the healthcare domain. To alleviate the problems of long-tail distribution and the lack of annotations of code-specific evidence, many previous works have proposed incorporating code knowledge to improve coding performance. However, existing methods often focus on a single type of knowledge and design specialized modules that are complex and incompatible with each other, thereby limiting their scalability and effectiveness. To address this issue, we propose GKI-ICD, a novel, general knowledge injection framework that integrates three key types of knowledge, namely ICD Description, ICD Synonym, and ICD Hierarchy, without specialized design of additional modules. The comprehensive utilization of the above knowledge, which exhibits both differences and complementarity, can effectively enhance the ICD coding performance. Extensive experiments on existing popular ICD coding benchmarks demonstrate the effectiveness of GKI-ICD, which achieves the state-of-the-art performance on most evaluation metrics. Code is available at https://github.com/xuzhang0112/GKI-ICD.
- Abstract(参考訳): ICD Codingは、医療領域で人気があり挑戦的なタスクである医療用テキスト文書に、幅広い医療コードを割り当てることを目的としている。
コード固有のエビデンスに対するアノテーションの欠如と長期分布の問題を軽減するため、コード知識を組み込んだコーディング性能の向上が提案されている。
しかし、既存のメソッドは、しばしば単一のタイプの知識と設計専用のモジュールに焦点を合わせ、それらが複雑で互いに互換性がないため、スケーラビリティと効率が制限される。
この問題に対処するため,新たな知識注入フレームワークであるGKI-ICDを提案する。
相違点と相補点の両方を示す上記の知識を包括的に活用することで、ICD符号化性能を効果的に向上させることができる。
既存のICD符号化ベンチマークの大規模な実験は、ほとんどの評価指標における最先端性能を実現するGKI-ICDの有効性を実証している。
コードはhttps://github.com/xuzhang0112/GKI-ICDで公開されている。
関連論文リスト
- Prototypical Hash Encoding for On-the-Fly Fine-Grained Category Discovery [65.16724941038052]
カテゴリ対応プロトタイプ生成(CPG)とディスクリミカテゴリ5.3%(DCE)が提案されている。
CPGは、各カテゴリを複数のプロトタイプで表現することで、カテゴリ内の多様性を完全にキャプチャすることを可能にする。
DCEは生成されたカテゴリプロトタイプのガイダンスによってハッシュコードの識別能力を向上する。
論文 参考訳(メタデータ) (2024-10-24T23:51:40Z) - Auxiliary Knowledge-Induced Learning for Automatic Multi-Label Medical Document Classification [22.323705343864336]
3つのアイデアを取り入れた新しいICDインデクシング手法を提案する。
臨床ノートから情報を収集するために,多レベル深部拡張残差畳み込みエンコーダを用いた。
我々はICD分類の課題を医療記録の補助的知識で定式化する。
論文 参考訳(メタデータ) (2024-05-29T13:44:07Z) - A Novel ICD Coding Method Based on Associated and Hierarchical Code Description Distillation [6.524062529847299]
ICD符号化は、ノイズの多い医療文書入力による多ラベルテキスト分類の問題である。
近年のICD符号化の進歩により、医療用ノートやコードに付加的なデータや知識ベースを組み込むことで、性能が向上した。
コード表現学習の改善と不適切なコード代入の回避を目的とした,関連および階層型コード記述蒸留(AHDD)に基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-17T07:26:23Z) - Exploring LLM Multi-Agents for ICD Coding [15.730751450511333]
ICD符号化のためのマルチエージェント方式は実世界の符号化プロセスを効果的に模倣し、一般的な符号と稀な符号の両方の性能を向上させる。
提案手法は, 事前学習や微調整を必要とする最先端のICD符号化手法に匹敵する結果を得るとともに, 稀なコード精度, 説明可能性で性能を向上する。
論文 参考訳(メタデータ) (2024-04-01T15:17:39Z) - CoRelation: Boosting Automatic ICD Coding Through Contextualized Code
Relation Learning [56.782963838838036]
我々は,ICDコード表現の学習を促進するために,文脈的かつ柔軟なフレームワークである新しい手法を提案する。
提案手法では,可能なすべてのコード関係をモデル化する際の臨床ノートのコンテキストを考慮した,依存型学習パラダイムを採用している。
論文 参考訳(メタデータ) (2024-02-24T03:25:28Z) - A Two-Stage Decoder for Efficient ICD Coding [10.634394331433322]
ICD符号の予測のための2段階復号機構を提案する。
まず、まず親コードを予測し、その子コードを前回の予測に基づいて予測する。
公開MIMIC-IIIデータセット実験により,本モデルが単一モデル設定で良好に動作することを示す。
論文 参考訳(メタデータ) (2023-05-27T17:25:13Z) - ICDBigBird: A Contextual Embedding Model for ICD Code Classification [71.58299917476195]
文脈単語埋め込みモデルは、複数のNLPタスクにおいて最先端の結果を得た。
ICDBigBirdは、Graph Convolutional Network(GCN)を統合するBigBirdベースのモデルである。
ICD分類作業におけるBigBirdモデルの有効性を実世界の臨床データセットで実証した。
論文 参考訳(メタデータ) (2022-04-21T20:59:56Z) - Few-Shot Electronic Health Record Coding through Graph Contrastive
Learning [64.8138823920883]
我々は,グラフベースのEHRコーディングフレームワークであるCoGraphを用いて,頻繁かつ希少なICD符号の性能向上を図る。
CoGraphは、異なるICDコードからHEWEグラフ間の類似点と相似点を学習し、それら間で情報を転送する。
2つのグラフコントラスト学習スキームであるGSCLとGECLは、HEWEグラフ構造を利用して、転送可能な特徴を符号化する。
論文 参考訳(メタデータ) (2021-06-29T14:53:17Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。