論文の概要: Exploring LLM Multi-Agents for ICD Coding
- arxiv url: http://arxiv.org/abs/2406.15363v2
- Date: Wed, 14 Aug 2024 15:32:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 17:36:35.212593
- Title: Exploring LLM Multi-Agents for ICD Coding
- Title(参考訳): ICD符号化のためのLLMマルチエージェントの探索
- Authors: Rumeng Li, Xun Wang, Hong Yu,
- Abstract要約: ICD符号化のためのマルチエージェント方式は実世界の符号化プロセスを効果的に模倣し、一般的な符号と稀な符号の両方の性能を向上させる。
提案手法は, 事前学習や微調整を必要とする最先端のICD符号化手法に匹敵する結果を得るとともに, 稀なコード精度, 説明可能性で性能を向上する。
- 参考スコア(独自算出の注目度): 15.730751450511333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To address the limitations of Large Language Models (LLMs) in the International Classification of Diseases (ICD) coding task, where they often produce inaccurate and incomplete prediction results due to the high-dimensional and skewed distribution of the ICD codes, and often lack interpretability and reliability as well. We introduce an innovative multi-agent approach for ICD coding which mimics the ICD coding assignment procedure in real-world settings, comprising five distinct agents: the patient, physician, coder, reviewer, and adjuster. Each agent utilizes an LLM-based model tailored to their specific role within the coding process. We also integrate the system with Electronic Health Record (HER)'s SOAP (subjective, objective, assessment and plan) structure to boost the performances. We compare our method with a system of agents designed solely by LLMs and other strong baselines and evaluate it using the Medical Information Mart for Intensive Care III (MIMIC-III) dataset. Our multi-agent coding framework significantly outperforms Zero-shot Chain of Thought (CoT) prompting and self-consistency with CoT (CoT-SC) in coding common and rare ICD codes. An ablation study validates the effectiveness of the designated agent roles. it also outperforms the LLM-designed agent system. Moreover, our method achieves comparable results to state-of-the-art ICD coding methods that require extensive pre-training or fine-tuning, and outperforms them in rare code accuracy, and explainability. Additionally, we demonstrate the method's practical applicability by presenting its performance in scenarios not limited by the common or rare ICD code constraints.The proposed multi-agent method for ICD coding effectively mimics the real-world coding process and improves performance on both common and rare codes.
- Abstract(参考訳): 国際疾患分類(ICD)コーディングタスクにおけるLLM(Large Language Models)の限界に対処するため、ICD符号の高次元かつ歪んだ分布による不正確で不完全な予測結果がしばしば得られ、解釈可能性や信頼性も欠落する。
我々は,ICDのコーディング代行手順を実環境で模倣する,革新的なマルチエージェント・アプローチを導入し,患者,医師,コーダ,レビュアー,調整者という5つの異なるエージェントを構成。
各エージェントは、コーディングプロセス内の特定の役割に合わせてLLMベースのモデルを使用する。
また、パフォーマンスを高めるために、Electronic Health Record(HER)のSOAP構造(主観的、客観的、評価、計画)とシステムを統合する。
我々は,LSMと他の強力なベースラインのみで設計されたエージェントシステムと比較し,MIMIC-IIIデータセットを用いた評価を行った。
我々のマルチエージェントコーディングフレームワークは、共通および稀なICD符号のコーディングにおいて、Zero-shot Chain of Thought(CoT)とCoT(CoT-SC)の自己整合性を著しく向上させる。
アブレーション研究は、指定されたエージェントの役割の有効性を検証する。
また、LLMが設計したエージェントシステムよりも優れています。
さらに,本手法は,事前学習や微調整を必要とする最先端のICD符号化手法に匹敵する結果が得られ,希少なコード精度,説明可能性で性能が向上する。
さらに,ICD符号の制約に制約されず,実世界の符号化プロセスを効果的に模倣し,一般的な符号と稀な符号の両方の性能を向上させることで,本手法の実用性を示す。
関連論文リスト
- PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
医用画像セグメンテーションのための半教師付き学習フレームワークであるプログレッシブ平均教師(PMT)を提案する。
我々のPMTは、トレーニングプロセスにおいて、堅牢で多様な特徴を学習することで、高忠実な擬似ラベルを生成する。
CT と MRI の異なる2つのデータセットに対する実験結果から,本手法が最先端の医用画像分割法より優れていることが示された。
論文 参考訳(メタデータ) (2024-09-08T15:02:25Z) - Auxiliary Knowledge-Induced Learning for Automatic Multi-Label Medical Document Classification [22.323705343864336]
3つのアイデアを取り入れた新しいICDインデクシング手法を提案する。
臨床ノートから情報を収集するために,多レベル深部拡張残差畳み込みエンコーダを用いた。
我々はICD分類の課題を医療記録の補助的知識で定式化する。
論文 参考訳(メタデータ) (2024-05-29T13:44:07Z) - RL-GPT: Integrating Reinforcement Learning and Code-as-policy [82.1804241891039]
本稿では,低速エージェントと高速エージェントからなる2レベル階層型フレームワークRL-GPTを提案する。
遅いエージェントはコーディングに適したアクションを分析し、速いエージェントはコーディングタスクを実行する。
この分解は、各エージェントが特定のタスクに効果的に集中し、パイプライン内で非常に効率的なことを証明します。
論文 参考訳(メタデータ) (2024-02-29T16:07:22Z) - CoRelation: Boosting Automatic ICD Coding Through Contextualized Code
Relation Learning [56.782963838838036]
我々は,ICDコード表現の学習を促進するために,文脈的かつ柔軟なフレームワークである新しい手法を提案する。
提案手法では,可能なすべてのコード関係をモデル化する際の臨床ノートのコンテキストを考慮した,依存型学習パラダイムを採用している。
論文 参考訳(メタデータ) (2024-02-24T03:25:28Z) - A Thorough Examination of Decoding Methods in the Era of LLMs [72.65956436513241]
復号法は、次世代の予測器から実用的なタスク解決器に言語モデルを変換する上で、必須の役割を果たす。
本稿では,大規模言語モデルの文脈における様々な復号法を包括的かつ多面的に分析する。
その結果,復号法の性能は特にタスク依存的であり,アライメント,モデルサイズ,量子化などの要因に影響されていることが明らかとなった。
論文 参考訳(メタデータ) (2024-02-10T11:14:53Z) - Accurate and Well-Calibrated ICD Code Assignment Through Attention Over
Diverse Label Embeddings [1.201425717264024]
ICDコードを臨床テキストに手動で割り当てるのは、時間がかかり、エラーが発生し、コストがかかる。
本稿では,ICDの自動符号化のための新しい手法について述べる。
MIMIC-IIIデータセットの異なる分割による実験は、提案手法がICD符号化における現在の最先端モデルより優れていることを示している。
論文 参考訳(メタデータ) (2024-02-05T16:40:23Z) - Automated clinical coding using off-the-shelf large language models [10.365958121087305]
診断用ICD符号を患者病院入院に割り当てる作業は、典型的には、熟練した人間のコーダーによって行われる。
自動ICD符号化への取り組みは、教師付きディープラーニングモデルによって支配されている。
本研究では,既製の事前学習型大規模言語モデルを活用し,実用的ソリューションを開発する。
論文 参考訳(メタデータ) (2023-10-10T11:56:48Z) - ICDBigBird: A Contextual Embedding Model for ICD Code Classification [71.58299917476195]
文脈単語埋め込みモデルは、複数のNLPタスクにおいて最先端の結果を得た。
ICDBigBirdは、Graph Convolutional Network(GCN)を統合するBigBirdベースのモデルである。
ICD分類作業におけるBigBirdモデルの有効性を実世界の臨床データセットで実証した。
論文 参考訳(メタデータ) (2022-04-21T20:59:56Z) - TransICD: Transformer Based Code-wise Attention Model for Explainable
ICD Coding [5.273190477622007]
国際疾患分類法 (ICD) は, 医療分野の請求システムにおいて有効かつ重要であることが示されている。
現在、ICDコードは手動で臨床メモに割り当てられており、多くのエラーを引き起こす可能性がある。
本稿では,文書のトークン間の相互依存を捉えるためにトランスフォーマーベースのアーキテクチャを適用し,コードワイド・アテンション・メカニズムを用いて文書全体のコード固有表現を学習する。
論文 参考訳(メタデータ) (2021-03-28T05:34:32Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。