Neural Parameter Search for Slimmer Fine-Tuned Models and Better Transfer
- URL: http://arxiv.org/abs/2505.18713v1
- Date: Sat, 24 May 2025 14:27:20 GMT
- Title: Neural Parameter Search for Slimmer Fine-Tuned Models and Better Transfer
- Authors: Guodong Du, Zitao Fang, Jing Li, Junlin Li, Runhua Jiang, Shuyang Yu, Yifei Guo, Yangneng Chen, Sim Kuan Goh, Ho-Kin Tang, Daojing He, Honghai Liu, Min Zhang,
- Abstract summary: Fine-tuned models often struggle outside their specific domains and exhibit considerable redundancy.<n>Recent studies suggest that combining a pruned fine-tuned model with the original pre-trained model can mitigate interference when merging model parameters across tasks.<n>We introduce a novel method called Neural Pruning (NPS-Pruning) for slimming down fine-tuned models.
- Score: 17.463052541838504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Foundation models and their checkpoints have significantly advanced deep learning, boosting performance across various applications. However, fine-tuned models often struggle outside their specific domains and exhibit considerable redundancy. Recent studies suggest that combining a pruned fine-tuned model with the original pre-trained model can mitigate forgetting, reduce interference when merging model parameters across tasks, and improve compression efficiency. In this context, developing an effective pruning strategy for fine-tuned models is crucial. Leveraging the advantages of the task vector mechanism, we preprocess fine-tuned models by calculating the differences between them and the original model. Recognizing that different task vector subspaces contribute variably to model performance, we introduce a novel method called Neural Parameter Search (NPS-Pruning) for slimming down fine-tuned models. This method enhances pruning efficiency by searching through neural parameters of task vectors within low-rank subspaces. Our method has three key applications: enhancing knowledge transfer through pairwise model interpolation, facilitating effective knowledge fusion via model merging, and enabling the deployment of compressed models that retain near-original performance while significantly reducing storage costs. Extensive experiments across vision, NLP, and multi-modal benchmarks demonstrate the effectiveness and robustness of our approach, resulting in substantial performance gains. The code is publicly available at: https://github.com/duguodong7/NPS-Pruning.
Related papers
- Mitigating Parameter Interference in Model Merging via Sharpness-Aware Fine-Tuning [6.110846759317336]
Large-scale deep learning models with a pretraining-finetuning paradigm have led to a surge of numerous task-specific models fine-tuned from a common pre-trained model.<n>Research efforts have been made on merging these large models into a single multi-task model, particularly with simple arithmetic on parameters.<n>Such merging methodology faces a central challenge: interference between model parameters fine-tuned on different tasks.<n>We propose to fine-tune pre-trained models via sharpness-aware minimization.
arXiv Detail & Related papers (2025-04-20T15:57:12Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their capabilities across different tasks and domains.<n>Current model merging techniques focus on merging all available models simultaneously, with weight matrices-based methods being the predominant approaches.<n>We propose a training-free projection-based continual merging method that processes models sequentially.
arXiv Detail & Related papers (2025-01-16T13:17:24Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.<n>We propose a novel model fine-tuning method to make full use of these ineffective parameters.<n>Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Efficient Learning With Sine-Activated Low-rank Matrices [25.12262017296922]
We propose a novel theoretical framework that integrates a sinusoidal function within the low-rank decomposition process.<n>Our method proves to be a plug in enhancement for existing low-rank models, as evidenced by its successful application in Vision Transformers (ViT), Large Language Models (LLMs), Neural Radiance Fields (NeRF) and 3D shape modelling.
arXiv Detail & Related papers (2024-03-28T08:58:20Z) - Do deep neural networks utilize the weight space efficiently? [2.9914612342004503]
Deep learning models like Transformers and Convolutional Neural Networks (CNNs) have revolutionized various domains, but their parameter-intensive nature hampers deployment in resource-constrained settings.
We introduce a novel concept utilizing column space and row space of weight matrices, which allows for a substantial reduction in model parameters without compromising performance.
Our approach applies to both Bottleneck and Attention layers, effectively halving the parameters while incurring only minor performance degradation.
arXiv Detail & Related papers (2024-01-26T21:51:49Z) - E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
Fine-tuning large-scale pretrained vision models for new tasks has become increasingly parameter-intensive.
We propose an Effective and Efficient Visual Prompt Tuning (E2VPT) approach for large-scale transformer-based model adaptation.
Our approach outperforms several state-of-the-art baselines on two benchmarks.
arXiv Detail & Related papers (2023-07-25T19:03:21Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
We introduce Powerpropagation, a new weight- parameterisation for neural networks that leads to inherently sparse models.
Models trained in this manner exhibit similar performance, but have a distribution with markedly higher density at zero, allowing more parameters to be pruned safely.
Here, we combine Powerpropagation with a traditional weight-pruning technique as well as recent state-of-the-art sparse-to-sparse algorithms, showing superior performance on the ImageNet benchmark.
arXiv Detail & Related papers (2021-10-01T10:03:57Z) - Dynamic Model Pruning with Feedback [64.019079257231]
We propose a novel model compression method that generates a sparse trained model without additional overhead.
We evaluate our method on CIFAR-10 and ImageNet, and show that the obtained sparse models can reach the state-of-the-art performance of dense models.
arXiv Detail & Related papers (2020-06-12T15:07:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.