How Is LLM Reasoning Distracted by Irrelevant Context? An Analysis Using a Controlled Benchmark
- URL: http://arxiv.org/abs/2505.18761v1
- Date: Sat, 24 May 2025 15:56:22 GMT
- Title: How Is LLM Reasoning Distracted by Irrelevant Context? An Analysis Using a Controlled Benchmark
- Authors: Minglai Yang, Ethan Huang, Liang Zhang, Mihai Surdeanu, William Wang, Liangming Pan,
- Abstract summary: Grade School Math with Distracting Context is a benchmark to evaluate Large Language Models' (LLMs) reasoning against systematically controlled context (IC)<n>Our experiments demonstrate that LLMs are significantly sensitive to IC, affecting both reasoning path selection and arithmetic accuracy.<n>We propose a stepwise tree search guided by a process reward model, which notably enhances robustness in out-of-distribution conditions.
- Score: 29.13320560500717
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Grade School Math with Distracting Context (GSM-DC), a synthetic benchmark to evaluate Large Language Models' (LLMs) reasoning robustness against systematically controlled irrelevant context (IC). GSM-DC constructs symbolic reasoning graphs with precise distractor injections, enabling rigorous, reproducible evaluation. Our experiments demonstrate that LLMs are significantly sensitive to IC, affecting both reasoning path selection and arithmetic accuracy. Additionally, training models with strong distractors improves performance in both in-distribution and out-of-distribution scenarios. We further propose a stepwise tree search guided by a process reward model, which notably enhances robustness in out-of-distribution conditions.
Related papers
- Enhancing Logical Reasoning in Language Models via Symbolically-Guided Monte Carlo Process Supervision [38.592071445554836]
Large language models (LLMs) have shown promising performance in mathematical and logical reasoning benchmarks.<n>LLMs are susceptible to content variations, demonstrating a lack of robust symbolic abstractions supporting their reasoning process.<n>Existing approaches fail to effectively leverage symbolic representations due to the challenges involved in developing reliable and scalable verification mechanisms.
arXiv Detail & Related papers (2025-05-26T18:06:39Z) - Mapping the Minds of LLMs: A Graph-Based Analysis of Reasoning LLM [11.181783720439563]
Large Language Models (LLMs) display sophisticated reasoning abilities via extended Chain-of-Thought (CoT) generation.<n>RLMs often demonstrate counterintuitive and unstable behaviors, such as performance degradation under few-shot prompting.<n>We introduce a unified graph-based analytical framework for better modeling the reasoning processes of RLMs.
arXiv Detail & Related papers (2025-05-20T03:54:57Z) - Model Utility Law: Evaluating LLMs beyond Performance through Mechanism Interpretable Metric [99.56567010306807]
Large Language Models (LLMs) have become indispensable across academia, industry, and daily applications.<n>One core challenge of evaluation in the large language model (LLM) era is the generalization issue.<n>We propose Model Utilization Index (MUI), a mechanism interpretability enhanced metric that complements traditional performance scores.
arXiv Detail & Related papers (2025-04-10T04:09:47Z) - Exploring LLM Reasoning Through Controlled Prompt Variations [0.9217021281095907]
We evaluate how well state-of-the-art models maintain logical consistency and correctness when confronted with four categories of prompt perturbations.<n>Our experiments, conducted on thirteen open-source and closed-source LLMs, reveal that introducing irrelevant context within the model's context window significantly degrades performance.<n>Certain perturbations inadvertently trigger chain-of-thought-like reasoning behaviors, even without explicit prompting.
arXiv Detail & Related papers (2025-04-02T20:18:50Z) - JustLogic: A Comprehensive Benchmark for Evaluating Deductive Reasoning in Large Language Models [51.99046112135311]
We introduce JustLogic, a synthetically generated deductive reasoning benchmark for rigorous evaluation of Large Language Models (LLMs)<n>JustLogic is highly complex, capable of generating a diverse range of linguistic patterns, vocabulary, and argument structures.<n>Our experimental results reveal that (i) state-of-the-art (SOTA) reasoning LLMs perform on par or better than the human average but significantly worse than the human ceiling.
arXiv Detail & Related papers (2025-01-24T15:49:10Z) - Understanding Chain-of-Thought in LLMs through Information Theory [16.78730663293352]
We formalize Chain-of-Thought (CoT) reasoning in Large Language Models (LLMs) through an information-theoretic lens.
Specifically, our framework quantifies the information gain' at each reasoning step, enabling the identification of failure modes.
We demonstrate the efficacy of our approach through extensive experiments on toy and GSM-8K data, where it significantly outperforms existing outcome-based methods.
arXiv Detail & Related papers (2024-11-18T19:14:36Z) - Enhancing Logical Reasoning in Large Language Models through Graph-based Synthetic Data [53.433309883370974]
This work explores the potential and limitations of using graph-based synthetic reasoning data as training signals to enhance Large Language Models' reasoning capabilities.<n>Our experiments, conducted on two established natural language reasoning tasks, demonstrate that supervised fine-tuning with synthetic graph-based reasoning data effectively enhances LLMs' reasoning performance without compromising their effectiveness on other standard evaluation benchmarks.
arXiv Detail & Related papers (2024-09-19T03:39:09Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - LLMs for Relational Reasoning: How Far are We? [8.840750655261251]
Large language models (LLMs) have revolutionized many areas by achieving state-of-the-art performance on downstream tasks.
Recent efforts have demonstrated that the LLMs are poor at solving sequential decision-making problems.
arXiv Detail & Related papers (2024-01-17T08:22:52Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Improved Logical Reasoning of Language Models via Differentiable
Symbolic Programming [12.984852480664378]
Pre-trained large language models (LMs) struggle to perform logical reasoning reliably despite advances in scale and compositionality.
We propose DSR-LM, a Differentiable Symbolic Reasoning framework where pre-trained LMs govern the perception of factual knowledge, and a symbolic module performs deductive reasoning.
arXiv Detail & Related papers (2023-05-05T07:24:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.