Exploring LLM Reasoning Through Controlled Prompt Variations
- URL: http://arxiv.org/abs/2504.02111v1
- Date: Wed, 02 Apr 2025 20:18:50 GMT
- Title: Exploring LLM Reasoning Through Controlled Prompt Variations
- Authors: Giannis Chatziveroglou, Richard Yun, Maura Kelleher,
- Abstract summary: We evaluate how well state-of-the-art models maintain logical consistency and correctness when confronted with four categories of prompt perturbations.<n>Our experiments, conducted on thirteen open-source and closed-source LLMs, reveal that introducing irrelevant context within the model's context window significantly degrades performance.<n>Certain perturbations inadvertently trigger chain-of-thought-like reasoning behaviors, even without explicit prompting.
- Score: 0.9217021281095907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the reasoning robustness of large language models (LLMs) on mathematical problem-solving tasks under systematically introduced input perturbations. Using the GSM8K dataset as a controlled testbed, we evaluate how well state-of-the-art models maintain logical consistency and correctness when confronted with four categories of prompt perturbations: irrelevant context, pathological instructions, factually relevant but non-essential context, and a combination of the latter two. Our experiments, conducted on thirteen open-source and closed-source LLMs, reveal that introducing irrelevant context within the model's context window significantly degrades performance, suggesting that distinguishing essential from extraneous details remains a pressing challenge. Surprisingly, performance regressions are relatively insensitive to the complexity of the reasoning task, as measured by the number of steps required, and are not strictly correlated with model size. Moreover, we observe that certain perturbations inadvertently trigger chain-of-thought-like reasoning behaviors, even without explicit prompting. Our findings highlight critical vulnerabilities in current LLMs and underscore the need for improved robustness against noisy, misleading, and contextually dense inputs, paving the way for more resilient and reliable reasoning in real-world applications.
Related papers
- Towards Robust LLMs: an Adversarial Robustness Measurement Framework [0.0]
Large Language Models (LLMs) remain vulnerable to adversarial perturbations, undermining their reliability in high-stakes applications.
We adapt the Robustness Measurement and Assessment framework to quantify LLM resilience against adversarial inputs without requiring access to model parameters.
Our work provides a systematic methodology to assess LLM robustness, advancing the development of more reliable language models for real-world deployment.
arXiv Detail & Related papers (2025-04-24T16:36:19Z) - The Curse of CoT: On the Limitations of Chain-of-Thought in In-Context Learning [39.613595533503144]
Chain-of-Thought (CoT) prompting has been widely recognized for its ability to enhance reasoning capabilities in large language models.
We show that CoT consistently underperforms direct answering across varying model scales and benchmark complexities.
Our analysis uncovers a fundamental explicit-implicit duality driving CoT's performance in pattern-based ICL.
arXiv Detail & Related papers (2025-04-07T13:51:06Z) - Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
Benchmarks are plagued by various biases, artifacts, or leakage.
Models may behave unreliably due to poorly explored failure modes.
causality offers an ideal framework to systematically address these challenges.
arXiv Detail & Related papers (2025-02-07T17:01:37Z) - Breaking Focus: Contextual Distraction Curse in Large Language Models [68.4534308805202]
We investigate a critical vulnerability in Large Language Models (LLMs)<n>This phenomenon arises when models fail to maintain consistent performance on questions modified with semantically coherent but irrelevant context.<n>We propose an efficient tree-based search methodology to automatically generate CDV examples.
arXiv Detail & Related papers (2025-02-03T18:43:36Z) - Bridging Interpretability and Robustness Using LIME-Guided Model Refinement [0.0]
Local Interpretable Model-Agnostic Explanations (LIME) systematically enhance model robustness.<n> Empirical evaluations on multiple benchmark datasets demonstrate that LIME-guided refinement not only improves interpretability but also significantly enhances resistance to adversarial perturbations and generalization to out-of-distribution data.
arXiv Detail & Related papers (2024-12-25T17:32:45Z) - Understanding Chain-of-Thought in LLMs through Information Theory [16.78730663293352]
We formalize Chain-of-Thought (CoT) reasoning in Large Language Models (LLMs) through an information-theoretic lens.
Specifically, our framework quantifies the information gain' at each reasoning step, enabling the identification of failure modes.
We demonstrate the efficacy of our approach through extensive experiments on toy and GSM-8K data, where it significantly outperforms existing outcome-based methods.
arXiv Detail & Related papers (2024-11-18T19:14:36Z) - RUPBench: Benchmarking Reasoning Under Perturbations for Robustness Evaluation in Large Language Models [12.112914393948415]
We present RUPBench, a benchmark designed to evaluate large language models (LLMs) across diverse reasoning tasks.
Our benchmark incorporates 15 reasoning datasets, categorized into commonsense, arithmetic, logical, and knowledge-intensive reasoning.
By examining the performance of state-of-the-art LLMs such as GPT-4o, Llama3, Phi-3, and Gemma on both original and perturbed datasets, we provide a detailed analysis of their robustness and error patterns.
arXiv Detail & Related papers (2024-06-16T17:26:44Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs)
We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties.
The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion.
arXiv Detail & Related papers (2024-02-15T18:46:24Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Seeing is not Believing: Robust Reinforcement Learning against Spurious
Correlation [57.351098530477124]
We consider one critical type of robustness against spurious correlation, where different portions of the state do not have correlations induced by unobserved confounders.
A model that learns such useless or even harmful correlation could catastrophically fail when the confounder in the test case deviates from the training one.
Existing robust algorithms that assume simple and unstructured uncertainty sets are therefore inadequate to address this challenge.
arXiv Detail & Related papers (2023-07-15T23:53:37Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.