Unsupervised cell segmentation by fast Gaussian Processes
- URL: http://arxiv.org/abs/2505.18902v1
- Date: Sat, 24 May 2025 23:28:14 GMT
- Title: Unsupervised cell segmentation by fast Gaussian Processes
- Authors: Laura Baracaldo, Blythe King, Haoran Yan, Yizi Lin, Nina Miolane, Mengyang Gu,
- Abstract summary: We develop a novel unsupervised cell segmentation algorithm based on fast Gaussian processes for noisy microscopy images.<n>We derived robust thresholding criteria adaptive for heterogeneous images containing distinct brightness at different parts to separate objects from the background.
- Score: 3.9223994610353974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cell boundary information is crucial for analyzing cell behaviors from time-lapse microscopy videos. Existing supervised cell segmentation tools, such as ImageJ, require tuning various parameters and rely on restrictive assumptions about the shape of the objects. While recent supervised segmentation tools based on convolutional neural networks enhance accuracy, they depend on high-quality labelled images, making them unsuitable for segmenting new types of objects not in the database. We developed a novel unsupervised cell segmentation algorithm based on fast Gaussian processes for noisy microscopy images without the need for parameter tuning or restrictive assumptions about the shape of the object. We derived robust thresholding criteria adaptive for heterogeneous images containing distinct brightness at different parts to separate objects from the background, and employed watershed segmentation to distinguish touching cell objects. Both simulated studies and real-data analysis of large microscopy images demonstrate the scalability and accuracy of our approach compared with the alternatives.
Related papers
- CellSeg1: Robust Cell Segmentation with One Training Image [37.60000299559688]
We introduce CellSeg1, a solution for segmenting cells of arbitrary morphology and modality with a few dozen cell annotations in 1 image.<n>Tested on 19 diverse cell datasets, CellSeg1 trained on 1 image achieved 0.81 average mAP at 0.5 IoU, performing comparably to existing models trained on over 500 images.
arXiv Detail & Related papers (2024-12-02T11:55:22Z) - Interpretable Embeddings for Segmentation-Free Single-Cell Analysis in Multiplex Imaging [1.8687965482996822]
Multiplex Imaging (MI) enables the simultaneous visualization of multiple biological markers in separate imaging channels at subcellular resolution.
We propose a segmentation-free deep learning approach that leverages grouped convolutions to learn interpretable embedded features from each imaging channel.
arXiv Detail & Related papers (2024-11-02T11:21:33Z) - Practical Guidelines for Cell Segmentation Models Under Optical Aberrations in Microscopy [14.042884268397058]
This study evaluates cell image segmentation models under optical aberrations from fluorescence and bright field microscopy.
We train and test several segmentation models, including the Otsu threshold method and Mask R-CNN with different network heads.
In contrast, Cellpose 2.0 proves effective for complex cell images under similar conditions.
arXiv Detail & Related papers (2024-04-12T15:45:26Z) - Multi-stream Cell Segmentation with Low-level Cues for Multi-modality
Images [66.79688768141814]
We develop an automatic cell classification pipeline to label microscopy images.
We then train a classification model based on the category labels.
We deploy two types of segmentation models to segment cells with roundish and irregular shapes.
arXiv Detail & Related papers (2023-10-22T08:11:08Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - A kinetic approach to consensus-based segmentation of biomedical images [39.58317527488534]
We apply a kinetic version of a bounded confidence consensus model to biomedical segmentation problems.
The large time behavior of the system is then computed with the aid of a surrogate Fokker-Planck approach.
We minimize the introduced segmentation metric for a relevant set of 2D gray-scale images.
arXiv Detail & Related papers (2022-11-08T09:54:34Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - From augmented microscopy to the topological transformer: a new approach
in cell image analysis for Alzheimer's research [0.0]
Cell image analysis is crucial in Alzheimer's research to detect the presence of A$beta$ protein inhibiting cell function.
We first found Unet is most suitable in augmented microscopy by comparing performance in multi-class semantics segmentation.
We develop the augmented microscopy method to capture nuclei in a brightfield image and the transformer using Unet model to convert an input image into a sequence of topological information.
arXiv Detail & Related papers (2021-08-03T16:59:33Z) - Attention-Based Transformers for Instance Segmentation of Cells in
Microstructures [22.215852332444904]
We present a novel attention-based cell detection transformer (Cell-DETR) for direct end-to-end instance segmentation.
While the segmentation performance is on par with a state-of-the-art instance segmentation method, Cell-DETR is simpler and faster.
For the specific use case, the proposed method surpasses the state-of-the-art tools for semantic segmentation and additionally predicts the individual object instances.
arXiv Detail & Related papers (2020-11-19T10:49:56Z) - Split and Expand: An inference-time improvement for Weakly Supervised
Cell Instance Segmentation [71.50526869670716]
We propose a two-step post-processing procedure, Split and Expand, to improve the conversion of segmentation maps to instances.
In the Split step, we split clumps of cells from the segmentation map into individual cell instances with the guidance of cell-center predictions.
In the Expand step, we find missing small cells using the cell-center predictions.
arXiv Detail & Related papers (2020-07-21T14:05:09Z) - Learning to segment clustered amoeboid cells from brightfield microscopy
via multi-task learning with adaptive weight selection [6.836162272841265]
We introduce a novel supervised technique for cell segmentation in a multi-task learning paradigm.
A combination of a multi-task loss, based on the region and cell boundary detection, is employed for an improved prediction efficiency of the network.
We observe an overall Dice score of 0.93 on the validation set, which is an improvement of over 15.9% on a recent unsupervised method, and outperforms the popular supervised U-net algorithm by at least $5.8%$ on average.
arXiv Detail & Related papers (2020-05-19T11:31:53Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.