Robust Stability Analysis of Positive Lure System with Neural Network Feedback
- URL: http://arxiv.org/abs/2505.18912v2
- Date: Mon, 14 Jul 2025 04:47:32 GMT
- Title: Robust Stability Analysis of Positive Lure System with Neural Network Feedback
- Authors: Hamidreza Montazeri Hedesh, Moh. Kamalul Wafi, Bahram Shafai, Milad Siami,
- Abstract summary: We consider a control system of Lur'e type in which not only the linear part includes parametric uncertainty but also the nonlinear sector bound is unknown.<n>By leveraging the positivity characteristic of the system, we derive an explicit formula for the stability radius of Lur'e systems.<n>This study introduces a scalable and efficient approach for robustness analysis of both Lur'e and NN-controlled systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the robustness of the Lur'e problem under positivity constraints, drawing on results from the positive Aizerman conjecture and robustness properties of Metzler matrices. Specifically, we consider a control system of Lur'e type in which not only the linear part includes parametric uncertainty but also the nonlinear sector bound is unknown. We investigate tools from positive linear systems to effectively solve the problems in complicated and uncertain nonlinear systems. By leveraging the positivity characteristic of the system, we derive an explicit formula for the stability radius of Lur'e systems. Furthermore, we extend our analysis to systems with neural network (NN) feedback loops. Building on this approach, we also propose a refinement method for sector bounds of NNs. This study introduces a scalable and efficient approach for robustness analysis of both Lur'e and NN-controlled systems. Finally, the proposed results are supported by illustrative examples.
Related papers
- Local Stability and Region of Attraction Analysis for Neural Network Feedback Systems under Positivity Constraints [0.0]
We study the local stability of nonlinear systems in the Lur'e form with static nonlinear feedback realized by feedforward neural networks (FFNNs)<n>By leveraging positivity system constraints, we employ a localized variant of the Aizerman conjecture, which provides sufficient conditions for exponential stability of trajectories confined to a compact set.
arXiv Detail & Related papers (2025-05-28T21:45:49Z) - Neural Contraction Metrics with Formal Guarantees for Discrete-Time Nonlinear Dynamical Systems [17.905596843865705]
Contraction metrics provide a powerful framework for analyzing stability, robustness, and convergence of various dynamical systems.<n>However, identifying these metrics for complex nonlinear systems remains an open challenge due to the lack of effective tools.<n>This paper develops verifiable contraction metrics for discrete scalable nonlinear systems.
arXiv Detail & Related papers (2025-04-23T21:27:32Z) - Generative System Dynamics in Recurrent Neural Networks [56.958984970518564]
We investigate the continuous time dynamics of Recurrent Neural Networks (RNNs)<n>We show that skew-symmetric weight matrices are fundamental to enable stable limit cycles in both linear and nonlinear configurations.<n> Numerical simulations showcase how nonlinear activation functions not only maintain limit cycles, but also enhance the numerical stability of the system integration process.
arXiv Detail & Related papers (2025-04-16T10:39:43Z) - Ensuring Both Positivity and Stability Using Sector-Bounded Nonlinearity for Systems with Neural Network Controllers [0.0]
We present a stability theorem that demonstrates the global exponential stability of linear systems under fully connected FFNN control.
Our approach effectively addresses the challenge of ensuring stability in highly nonlinear systems.
We showcase the practical applicability of our methodology through its implementation in a linear system managed by a FFNN trained on output feedback controller data.
arXiv Detail & Related papers (2024-06-18T16:05:57Z) - Backward Reachability Analysis of Neural Feedback Loops: Techniques for
Linear and Nonlinear Systems [59.57462129637796]
This paper presents a backward reachability approach for safety verification of closed-loop systems with neural networks (NNs)
The presence of NNs in the feedback loop presents a unique set of problems due to the nonlinearities in their activation functions and because NN models are generally not invertible.
We present frameworks for calculating BP over-approximations for both linear and nonlinear systems with control policies represented by feedforward NNs.
arXiv Detail & Related papers (2022-09-28T13:17:28Z) - Learning over All Stabilizing Nonlinear Controllers for a
Partially-Observed Linear System [4.3012765978447565]
We propose a parameterization of nonlinear output feedback controllers for linear dynamical systems.
Our approach guarantees the closed-loop stability of partially observable linear dynamical systems without requiring any constraints to be satisfied.
arXiv Detail & Related papers (2021-12-08T10:43:47Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Linear systems with neural network nonlinearities: Improved stability
analysis via acausal Zames-Falb multipliers [0.0]
We analyze the stability of feedback interconnections of a linear time-invariant system with a neural network nonlinearity in discrete time.
Our approach provides a flexible and versatile framework for stability analysis of feedback interconnections with neural network nonlinearities.
arXiv Detail & Related papers (2021-03-31T14:21:03Z) - Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
Dynamics [49.41640137945938]
We propose a neural dynamic mode decomposition for estimating a lift function based on neural networks.
With our proposed method, the forecast error is backpropagated through the neural networks and the spectral decomposition.
Our experiments demonstrate the effectiveness of our proposed method in terms of eigenvalue estimation and forecast performance.
arXiv Detail & Related papers (2020-12-11T08:34:26Z) - Robustness Analysis of Neural Networks via Efficient Partitioning with
Applications in Control Systems [45.35808135708894]
Neural networks (NNs) are now routinely implemented on systems that must operate in uncertain environments.
This paper unifies propagation and partition approaches to provide a family of robustness analysis algorithms.
New partitioning techniques are aware of their current bound estimates and desired boundary shape.
arXiv Detail & Related papers (2020-10-01T16:51:36Z) - Lipschitz Recurrent Neural Networks [100.72827570987992]
We show that our Lipschitz recurrent unit is more robust with respect to input and parameter perturbations as compared to other continuous-time RNNs.
Our experiments demonstrate that the Lipschitz RNN can outperform existing recurrent units on a range of benchmark tasks.
arXiv Detail & Related papers (2020-06-22T08:44:52Z) - Reach-SDP: Reachability Analysis of Closed-Loop Systems with Neural
Network Controllers via Semidefinite Programming [19.51345816555571]
We propose a novel forward reachability analysis method for the safety verification of linear time-varying systems with neural networks in feedback.
We show that we can compute these approximate reachable sets using semidefinite programming.
We illustrate our method in a quadrotor example, in which we first approximate a nonlinear model predictive controller via a deep neural network and then apply our analysis tool to certify finite-time reachability and constraint satisfaction of the closed-loop system.
arXiv Detail & Related papers (2020-04-16T18:48:25Z) - On dissipative symplectic integration with applications to
gradient-based optimization [77.34726150561087]
We propose a geometric framework in which discretizations can be realized systematically.
We show that a generalization of symplectic to nonconservative and in particular dissipative Hamiltonian systems is able to preserve rates of convergence up to a controlled error.
arXiv Detail & Related papers (2020-04-15T00:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.