WeedNet: A Foundation Model-Based Global-to-Local AI Approach for Real-Time Weed Species Identification and Classification
- URL: http://arxiv.org/abs/2505.18930v1
- Date: Sun, 25 May 2025 01:49:36 GMT
- Title: WeedNet: A Foundation Model-Based Global-to-Local AI Approach for Real-Time Weed Species Identification and Classification
- Authors: Yanben Shen, Timilehin T. Ayanlade, Venkata Naresh Boddepalli, Mojdeh Saadati, Ashlyn Rairdin, Zi K. Deng, Muhammad Arbab Arshad, Aditya Balu, Daren Mueller, Asheesh K Singh, Wesley Everman, Nirav Merchant, Baskar Ganapathysubramanian, Meaghan Anderson, Soumik Sarkar, Arti Singh,
- Abstract summary: We present WeedNet, the first global-scale weed identification model capable of recognizing an extensive set of weed species.<n>WeedNet achieved 91.02% accuracy across 1,593 weed species, with 41% species achieving 100% accuracy.
- Score: 6.546238745730564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early identification of weeds is essential for effective management and control, and there is growing interest in automating the process using computer vision techniques coupled with AI methods. However, challenges associated with training AI-based weed identification models, such as limited expert-verified data and complexity and variability in morphological features, have hindered progress. To address these issues, we present WeedNet, the first global-scale weed identification model capable of recognizing an extensive set of weed species, including noxious and invasive plant species. WeedNet is an end-to-end real-time weed identification pipeline and uses self-supervised learning, fine-tuning, and enhanced trustworthiness strategies. WeedNet achieved 91.02% accuracy across 1,593 weed species, with 41% species achieving 100% accuracy. Using a fine-tuning strategy and a Global-to-Local approach, the local Iowa WeedNet model achieved an overall accuracy of 97.38% for 85 Iowa weeds, most classes exceeded a 90% mean accuracy per class. Testing across intra-species dissimilarity (developmental stages) and inter-species similarity (look-alike species) suggests that diversity in the images collected, spanning all the growth stages and distinguishable plant characteristics, is crucial in driving model performance. The generalizability and adaptability of the Global WeedNet model enable it to function as a foundational model, with the Global-to-Local strategy allowing fine-tuning for region-specific weed communities. Additional validation of drone- and ground-rover-based images highlights the potential of WeedNet for integration into robotic platforms. Furthermore, integration with AI for conversational use provides intelligent agricultural and ecological conservation consulting tools for farmers, agronomists, researchers, land managers, and government agencies across diverse landscapes.
Related papers
- AI in Agriculture: A Survey of Deep Learning Techniques for Crops, Fisheries and Livestock [77.95897723270453]
Crops, fisheries and livestock form the backbone of global food production, essential to feed the ever-growing global population.<n> Addressing these issues requires efficient, accurate, and scalable technological solutions, highlighting the importance of artificial intelligence (AI)<n>This survey presents a systematic and thorough review of more than 200 research works covering conventional machine learning approaches, advanced deep learning techniques, and recent vision-language foundation models.
arXiv Detail & Related papers (2025-07-29T17:59:48Z) - Self-Supervised Learning for Robotic Leaf Manipulation: A Hybrid Geometric-Neural Approach [0.0]
We propose a novel hybrid geometric-neural approach for autonomous leaf grasping.<n>Our method integrates traditional computer vision with neural networks through self-supervised learning.<n>Our approach achieves an 88.0% success rate in controlled environments and 84.7% in real greenhouse conditions.
arXiv Detail & Related papers (2025-05-06T17:22:21Z) - WeedsGalore: A Multispectral and Multitemporal UAV-based Dataset for Crop and Weed Segmentation in Agricultural Maize Fields [0.7421845364041001]
Weeds are one of the major reasons for crop yield loss but current weeding practices fail to manage weeds in an efficient and targeted manner.<n>We present a novel dataset for semantic and instance segmentation of crops and weeds in agricultural maize fields.
arXiv Detail & Related papers (2025-02-18T18:13:19Z) - WeedVision: Multi-Stage Growth and Classification of Weeds using DETR and RetinaNet for Precision Agriculture [0.0]
This research uses object detection models to identify and classify 16 weed species of economic concern across 174 classes.<n>A robust dataset comprising 203,567 images was developed, meticulously labeled by species and growth stage.<n>RetinaNet demonstrated superior performance, achieving a mean Average Precision (mAP) of 0.907 on the training set and 0.904 on the test set.
arXiv Detail & Related papers (2025-02-16T20:49:22Z) - Multispectral Remote Sensing for Weed Detection in West Australian Agricultural Lands [3.6284577335311563]
The Kondinin region in Western Australia faces significant agricultural challenges due to pervasive weed infestations, causing economic losses and ecological impacts.<n>This study constructs a tailored multispectral remote sensing framework for weed detection to advance precision agriculture practices.<n>Unmanned aerial vehicles were used to collect raw multispectral data from two experimental areas over four years, covering 0.6046 km2 and ground truth annotations were created with GPS-enabled vehicles to manually label weeds and crops.
arXiv Detail & Related papers (2025-02-12T07:01:42Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Recognize Any Regions [55.76437190434433]
RegionSpot integrates position-aware localization knowledge from a localization foundation model with semantic information from a ViL model.<n>Experiments in open-world object recognition show that our RegionSpot achieves significant performance gain over prior alternatives.
arXiv Detail & Related papers (2023-11-02T16:31:49Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - Domain Generalization for Crop Segmentation with Standardized Ensemble Knowledge Distillation [42.39035033967183]
Service robots need a real-time perception system that understands their surroundings and identifies their targets in the wild.
Existing methods, however, often fall short in generalizing to new crops and environmental conditions.
We propose a novel approach to enhance domain generalization using knowledge distillation.
arXiv Detail & Related papers (2023-04-03T14:28:29Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
We present an Agave tequilana Weber azul crop segmentation and maturity classification using very high resolution satellite imagery.
We solve real-world deep learning problems in the very specific context of agave crop segmentation.
With the resulting accurate models, agave production forecasting can be made available for large regions.
arXiv Detail & Related papers (2023-03-21T03:15:29Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - Deep-CNN based Robotic Multi-Class Under-Canopy Weed Control in
Precision Farming [2.6085535710135654]
Real-time multi-class weed identification enables species-specific treatment of weeds and significantly reduces the amount of herbicide use.
Here, we present a baseline for classification performance using five benchmark CNN models.
We deploy MobileNetV2 onto our own compact autonomous robot textitSAMBot for real-time weed detection.
arXiv Detail & Related papers (2021-12-28T03:51:55Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
This paper proposes a Transferable Neighborhood Discovery (TraND) framework to bridge the domain gap for unsupervised cross-domain gait recognition.
We design an end-to-end trainable approach to automatically discover the confident neighborhoods of unlabeled samples in the latent space.
Our method achieves state-of-the-art results on two public datasets, i.e., CASIA-B and OU-LP.
arXiv Detail & Related papers (2021-02-09T03:07:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.