論文の概要: Can Large Language Models Infer Causal Relationships from Real-World Text?
- arxiv url: http://arxiv.org/abs/2505.18931v1
- Date: Sun, 25 May 2025 01:50:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:42.761464
- Title: Can Large Language Models Infer Causal Relationships from Real-World Text?
- Title(参考訳): 大規模言語モデルは実世界のテキストから因果関係を推定できるか?
- Authors: Ryan Saklad, Aman Chadha, Oleg Pavlov, Raha Moraffah,
- Abstract要約: 本稿では,大規模言語モデル(LLM)が実世界のテキストから因果関係を推定できるかどうかを検討する。
私たちの知る限りでは、私たちのベンチマークは、このタスクのための最初の実世界のデータセットです。
- 参考スコア(独自算出の注目度): 2.602939322715435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding and inferring causal relationships from texts is a core aspect of human cognition and is essential for advancing large language models (LLMs) towards artificial general intelligence. Existing work primarily focuses on synthetically generated texts which involve simple causal relationships explicitly mentioned in the text. This fails to reflect the complexities of real-world tasks. In this paper, we investigate whether LLMs are capable of inferring causal relationships from real-world texts. We develop a benchmark drawn from real-world academic literature which includes diverse texts with respect to length, complexity of relationships (different levels of explicitness, number of events, and causal relationships), and domains and sub-domains. To the best of our knowledge, our benchmark is the first-ever real-world dataset for this task. Our experiments on state-of-the-art LLMs evaluated on our proposed benchmark demonstrate significant challenges, with the best-performing model achieving an average F1 score of only 0.477. Analysis reveals common pitfalls: difficulty with implicitly stated information, in distinguishing relevant causal factors from surrounding contextual details, and with connecting causally relevant information spread across lengthy textual passages. By systematically characterizing these deficiencies, our benchmark offers targeted insights for further research into advancing LLM causal reasoning.
- Abstract(参考訳): テキストから因果関係を理解し、推論することは、人間の認知の中核的な側面であり、人工知能への大きな言語モデル(LLM)の進化に不可欠である。
現存する研究は主に、テキストに明記された単純な因果関係を含む合成されたテキストに焦点を当てている。
これは現実世界のタスクの複雑さを反映しない。
本稿では,LLMが実世界のテキストから因果関係を推定できるかどうかを検討する。
筆者らは,長さ,関係の複雑さ(明度,事象数,因果関係),ドメインとサブドメインに関する多様なテキストを含む実世界の学術文献から得られたベンチマークを作成した。
私たちの知る限りでは、私たちのベンチマークは、このタスクのための最初の実世界のデータセットです。
提案したベンチマークで評価した最先端LCMに関する実験は,F1の平均スコアが0.477であることから,大きな課題を呈している。
分析は、暗黙的に記述された情報、関連する因果的要因と周囲の文脈的詳細を区別することの難しさ、長いテキストの通路に散在する因果的関連情報を接続することの難しさなど、共通の落とし穴を明らかにしている。
これらの欠陥を体系的に特徴付けることで、我々のベンチマークはLLM因果推論のさらなる研究のための目標となる洞察を提供する。
関連論文リスト
- Evaluating Multi-Hop Reasoning in Large Language Models: A Chemistry-Centric Case Study [0.9424565541639368]
化学領域における大規模言語モデルの構成的推論能力を評価するために,キュレートされたデータセットと定義された評価プロセスからなる新しいベンチマークを導入する。
我々の手法はOpenAI推論モデルと名前付きエンティティ認識(NER)システムを統合し、最近の文献から化学物質を抽出し、外部知識ベースで拡張して知識グラフを形成する。
実験により, 最先端モデルでさえ, マルチホップ構成推論において重要な課題に直面していることが明らかとなった。
論文 参考訳(メタデータ) (2025-04-23T04:36:19Z) - ExpliCa: Evaluating Explicit Causal Reasoning in Large Language Models [75.05436691700572]
明示的な因果推論において,LLM(Large Language Models)を評価するための新しいデータセットであるExpliCaを紹介する。
ExpliCa上で7つの商用およびオープンソース LLM をテストしました。
驚くべきことに、モデルは因果関係と時間的関係を関連付ける傾向にあり、そのパフォーマンスはイベントの言語的順序にも強く影響される。
論文 参考訳(メタデータ) (2025-02-21T14:23:14Z) - Navigating Semantic Relations: Challenges for Language Models in Abstract Common-Sense Reasoning [5.4141465747474475]
大規模言語モデル(LLM)は、人間のようなテキストを生成し、適度な複雑さの問題を解くことで、顕著な性能を達成した。
概念ネット知識グラフを用いて,LLMにおける抽象的常識推論を体系的に評価する。
論文 参考訳(メタデータ) (2025-02-19T20:20:24Z) - Who Writes What: Unveiling the Impact of Author Roles on AI-generated Text Detection [44.05134959039957]
本稿では,社会言語学的属性・ジェンダー,CEFR習熟度,学術分野,言語環境に影響を及ぼすAIテキスト検出装置について検討する。
CEFRの習熟度と言語環境は一貫して検出器の精度に影響を与え,性別や学術分野は検出器に依存した効果を示した。
これらの発見は、特定の人口集団に不公平に罰を与えるのを避けるために、社会的に認識されたAIテキストの検出が不可欠であることを示している。
論文 参考訳(メタデータ) (2025-02-18T07:49:31Z) - Factual Dialogue Summarization via Learning from Large Language Models [35.63037083806503]
大規模言語モデル(LLM)に基づく自動テキスト要約モデルは、より現実的に一貫した要約を生成する。
ゼロショット学習を用いて、LLMから記号的知識を抽出し、事実整合性(正)および矛盾性(負)の要約を生成する。
各種自動評価指標で確認したように,コヒーレンス,フラレンシ,関連性を保ちながら,より優れた事実整合性を実現する。
論文 参考訳(メタデータ) (2024-06-20T20:03:37Z) - CausalBench: A Comprehensive Benchmark for Causal Learning Capability of LLMs [27.362012903540492]
因果関係を理解する能力は、大言語モデル(LLM)の出力説明と反実的推論の能力に大きな影響を及ぼす。
因果関係を理解する能力は、大言語モデル(LLM)の出力説明と反実的推論の能力に大きな影響を及ぼす。
論文 参考訳(メタデータ) (2024-04-09T14:40:08Z) - Discovery of the Hidden World with Large Language Models [95.58823685009727]
本稿では,大きな言語モデル(LLM)を導入してギャップを埋めるCausal representatiOn AssistanT(COAT)を提案する。
LLMは世界中の大規模な観測に基づいて訓練されており、構造化されていないデータから重要な情報を抽出する優れた能力を示している。
COATはまた、特定変数間の因果関係を見つけるためにCDを採用し、提案された要因を反復的に洗練するためにLSMにフィードバックを提供する。
論文 参考訳(メタデータ) (2024-02-06T12:18:54Z) - Zero-shot Causal Graph Extrapolation from Text via LLMs [50.596179963913045]
我々は,自然言語から因果関係を推定する大規模言語モデル (LLM) の能力を評価する。
LLMは、(特別な)トレーニングサンプルを必要とせずにペア関係のベンチマークで競合性能を示す。
我々は、反復的なペアワイズクエリを通して因果グラフを外挿するアプローチを拡張した。
論文 参考訳(メタデータ) (2023-12-22T13:14:38Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - ERICA: Improving Entity and Relation Understanding for Pre-trained
Language Models via Contrastive Learning [97.10875695679499]
そこで本研究では, ERICA という新たなコントラスト学習フレームワークを提案し, エンティティとその関係をテキストでより深く理解する。
実験の結果,提案する erica フレームワークは文書レベルの言語理解タスクにおいて一貫した改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-12-30T03:35:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。