Learning to Explain: Prototype-Based Surrogate Models for LLM Classification
- URL: http://arxiv.org/abs/2505.18970v2
- Date: Mon, 02 Jun 2025 02:47:57 GMT
- Title: Learning to Explain: Prototype-Based Surrogate Models for LLM Classification
- Authors: Bowen Wei, Mehrdad Fazli, Ziwei Zhu,
- Abstract summary: Large language models (LLMs) have demonstrated impressive performance on natural language tasks, but their decision-making processes remain largely opaque.<n>We propose textbfProtoSurE, a prototype-based surrogate framework that provides faithful and human-understandable explanations.
- Score: 1.7373859011890633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated impressive performance on natural language tasks, but their decision-making processes remain largely opaque. Existing explanation methods either suffer from limited faithfulness to the model's reasoning or produce explanations that humans find difficult to understand. To address these challenges, we propose \textbf{ProtoSurE}, a novel prototype-based surrogate framework that provides faithful and human-understandable explanations for LLMs. ProtoSurE trains an interpretable-by-design surrogate model that aligns with the target LLM while utilizing sentence-level prototypes as human-understandable concepts. Extensive experiments show that ProtoSurE consistently outperforms SOTA explanation methods across diverse LLMs and datasets. Importantly, ProtoSurE demonstrates strong data efficiency, requiring relatively few training examples to achieve good performance, making it practical for real-world applications.
Related papers
- Harnessing LLMs Explanations to Boost Surrogate Models in Tabular Data Classification [13.10925195056774]
Large Language Models (LLMs) have shown remarkable ability in solving complex tasks.<n>Existing LLM-based methods suffer from high resource requirements, suboptimal demonstration selection, and limited interpretability.
arXiv Detail & Related papers (2025-05-09T02:57:39Z) - Self-Refine Instruction-Tuning for Aligning Reasoning in Language Models [0.8133739801185272]
The alignments of reasoning abilities between smaller and larger Language Models are largely conducted via Supervised Fine-Tuning (SFT)
We propose the Self-refine Instruction-tuning method that elicits Smaller Language Models to self-refine their abilities.
Results obtained on commonsense and math reasoning tasks show that this approach significantly outperforms Instruction-tuning in both in-domain and out-domain scenarios.
arXiv Detail & Related papers (2024-05-01T09:10:27Z) - Integrating Explanations in Learning LTL Specifications from Demonstrations [6.070833893646998]
This paper investigates whether recent advances in Large Language Models (LLMs) can assist in translating human explanations into a format that can robustly support learning Linear Temporal Logic (LTL) from demonstrations.
We present a principled approach combining LLMs and optimization-based methods to faithfully translate human explanations and demonstrations into specifications.
arXiv Detail & Related papers (2024-04-03T17:09:00Z) - FaithLM: Towards Faithful Explanations for Large Language Models [67.29893340289779]
Large Language Models (LLMs) have become proficient in addressing complex tasks by leveraging their internal knowledge and reasoning capabilities.
The black-box nature of these models complicates the task of explaining their decision-making processes.
We introduce FaithLM to explain the decision of LLMs with natural language (NL) explanations.
arXiv Detail & Related papers (2024-02-07T09:09:14Z) - Learning to Generate Explainable Stock Predictions using Self-Reflective
Large Language Models [54.21695754082441]
We propose a framework to teach Large Language Models (LLMs) to generate explainable stock predictions.
A reflective agent learns how to explain past stock movements through self-reasoning, while the PPO trainer trains the model to generate the most likely explanations.
Our framework can outperform both traditional deep-learning and LLM methods in prediction accuracy and Matthews correlation coefficient.
arXiv Detail & Related papers (2024-02-06T03:18:58Z) - Explanation-aware Soft Ensemble Empowers Large Language Model In-context
Learning [50.00090601424348]
Large language models (LLMs) have shown remarkable capabilities in various natural language understanding tasks.
We propose EASE, an Explanation-Aware Soft Ensemble framework to empower in-context learning with LLMs.
arXiv Detail & Related papers (2023-11-13T06:13:38Z) - Proto-lm: A Prototypical Network-Based Framework for Built-in
Interpretability in Large Language Models [27.841725567976315]
Large Language Models (LLMs) have significantly advanced the field of Natural Language Processing (NLP), but their lack of interpretability has been a major concern.
In this work, we introduce proto-lm, a prototypical network-based white-box framework that allows LLMs to learn immediately interpretable embeddings.
Our method's applicability and interpretability are demonstrated through experiments on a wide range of NLP tasks, and our results indicate a new possibility of creating interpretable models without sacrificing performance.
arXiv Detail & Related papers (2023-11-03T05:55:32Z) - In-Context Explainers: Harnessing LLMs for Explaining Black Box Models [28.396104334980492]
Large Language Models (LLMs) have demonstrated exceptional capabilities in complex tasks like machine translation, commonsense reasoning, and language understanding.
One of the primary reasons for the adaptability of LLMs in such diverse tasks is their in-context learning (ICL) capability, which allows them to perform well on new tasks by simply using a few task samples in the prompt.
We propose a novel framework, In-Context Explainers, comprising of three novel approaches that exploit the ICL capabilities of LLMs to explain the predictions made by other predictive models.
arXiv Detail & Related papers (2023-10-09T15:31:03Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
This paper introduces ASTxplainer, an explainability method specific to Large Language Models for code.
At its core, ASTxplainer provides an automated method for aligning token predictions with AST nodes.
We perform an empirical evaluation on 12 popular LLMs for code using a curated dataset of the most popular GitHub projects.
arXiv Detail & Related papers (2023-08-07T18:50:57Z) - Masked Language Modeling and the Distributional Hypothesis: Order Word
Matters Pre-training for Little [74.49773960145681]
A possible explanation for the impressive performance of masked language model (MLM)-training is that such models have learned to represent the syntactic structures prevalent in NLP pipelines.
In this paper, we propose a different explanation: pre-trains succeed on downstream tasks almost entirely due to their ability to model higher-order word co-occurrence statistics.
Our results show that purely distributional information largely explains the success of pre-training, and underscore the importance of curating challenging evaluation datasets that require deeper linguistic knowledge.
arXiv Detail & Related papers (2021-04-14T06:30:36Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.