AmorLIP: Efficient Language-Image Pretraining via Amortization
- URL: http://arxiv.org/abs/2505.18983v1
- Date: Sun, 25 May 2025 05:30:37 GMT
- Title: AmorLIP: Efficient Language-Image Pretraining via Amortization
- Authors: Haotian Sun, Yitong Li, Yuchen Zhuang, Niao He, Hanjun Dai, Bo Dai,
- Abstract summary: Contrastive Language-Image Pretraining (CLIP) has demonstrated strong zero-shot performance across diverse downstream text-image tasks.<n>We propose AmorLIP, an efficient CLIP pretraining framework that amortizes expensive computations involved in contrastive learning through lightweight neural networks.
- Score: 47.4350993430346
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Contrastive Language-Image Pretraining (CLIP) has demonstrated strong zero-shot performance across diverse downstream text-image tasks. Existing CLIP methods typically optimize a contrastive objective using negative samples drawn from each minibatch. To achieve robust representation learning, these methods require extremely large batch sizes and escalate computational demands to hundreds or even thousands of GPUs. Prior approaches to mitigate this issue often compromise downstream performance, prolong training duration, or face scalability challenges with very large datasets. To overcome these limitations, we propose AmorLIP, an efficient CLIP pretraining framework that amortizes expensive computations involved in contrastive learning through lightweight neural networks, which substantially improves training efficiency and performance. Leveraging insights from a spectral factorization of energy-based models, we introduce novel amortization objectives along with practical techniques to improve training stability. Extensive experiments across 38 downstream tasks demonstrate the superior zero-shot classification and retrieval capabilities of AmorLIP, consistently outperforming standard CLIP baselines with substantial relative improvements of up to 12.24%.
Related papers
- LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
Training Large Language Models (LLMs) from scratch requires immense computational resources, making it prohibitively expensive.<n>Model scaling-up offers a promising solution by leveraging the parameters of smaller models to create larger ones.<n>We propose textbfLESA, a novel learnable method for depth scaling-up.
arXiv Detail & Related papers (2025-02-19T14:58:48Z) - CLIP-PING: Boosting Lightweight Vision-Language Models with Proximus Intrinsic Neighbors Guidance [14.849943391904882]
We propose CLIP-PING: Contrastive Language-Image Pre-training with Proximus Intrinsic Neighbors Guidance.<n>CLIP-PING bootstraps unimodal features extracted from arbitrary pre-trained encoders to obtain intrinsic guidance of proximus neighbor samples.<n>Experiments reveal that CLIP-PING notably surpasses its peers in zero-shot generalization and cross-modal retrieval tasks.
arXiv Detail & Related papers (2024-12-05T04:58:28Z) - Pruning Large Language Models with Semi-Structural Adaptive Sparse Training [17.381160429641316]
Adaptive Sparse Trainer (AST) is a novel and efficient retraining framework tailored for semi-structured sparse models.<n>AST reduces the perplexity and zero-shot accuracy gap between dense and 2:4 semi-structured sparse models to 0.6 and 1.16%, respectively.
arXiv Detail & Related papers (2024-07-30T06:33:44Z) - FastCLIP: A Suite of Optimization Techniques to Accelerate CLIP Training with Limited Resources [45.40926501138365]
We introduce FastCLIP, a general CLIP training framework built on advanced compositional optimization techniques.
Our framework is equipped with an efficient gradient reduction strategy to reduce communication overhead.
We benchmark the performance of FastCLIP and the state-of-the-art training baseline on different compute scales.
arXiv Detail & Related papers (2024-07-01T16:37:18Z) - MoPE-CLIP: Structured Pruning for Efficient Vision-Language Models with
Module-wise Pruning Error Metric [57.3330687266266]
We find that using smaller pre-trained models and applying magnitude-based pruning on CLIP models leads to inflexibility and inferior performance.
Using the Module-wise Pruning Error (MoPE) metric, we introduce a unified pruning framework applicable to both pre-training and task-specific fine-tuning compression stages.
arXiv Detail & Related papers (2024-03-12T17:24:26Z) - Getting More Juice Out of Your Data: Hard Pair Refinement Enhances Visual-Language Models Without Extra Data [122.282521548393]
Contrastive Language-Image Pre-training (CLIP) has become the standard for cross-modal image-text representation learning.<n>We introduce HELIP, a cost-effective strategy that improves CLIP models by exploiting challenging text-image pairs within existing datasets in continuous training.
arXiv Detail & Related papers (2023-05-09T07:00:17Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
We argue that zero-shot structured pruning of pretrained models allows them to increase compute efficiency with minimal reduction in performance.
Our results show that pruning convolutional filters of pretrained models can lead to more than 20% performance improvement in low computational regimes.
arXiv Detail & Related papers (2023-04-25T21:49:09Z) - Multimodal Parameter-Efficient Few-Shot Class Incremental Learning [1.9220716793379256]
Few-Shot Class Incremental Learning (FSCIL) is a challenging continual learning task, where limited training examples are available during several learning sessions.
To succeed in this task, it is necessary to avoid over-fitting new classes caused by biased distributions in the few-shot training sets.
CPE-CLIP significantly improves FSCIL performance compared to state-of-the-art proposals while also drastically reducing the number of learnable parameters and training costs.
arXiv Detail & Related papers (2023-03-08T17:34:15Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
We present a novel perspective on the interplay between SSL and DC paradigms.
We show that it is feasible to simultaneously learn a dense and gated sub-network from scratch in a SSL setting.
The co-evolution during pre-training of both dense and gated encoder offers a good accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-01-22T17:12:58Z) - Online Convolutional Re-parameterization [51.97831675242173]
We present online convolutional re- parameterization (OREPA), a two-stage pipeline, aiming to reduce the huge training overhead by squeezing the complex training-time block into a single convolution.
Compared with the state-of-the-art re-param models, OREPA is able to save the training-time memory cost by about 70% and accelerate the training speed by around 2x.
We also conduct experiments on object detection and semantic segmentation and show consistent improvements on the downstream tasks.
arXiv Detail & Related papers (2022-04-02T09:50:19Z) - Decoupled Contrastive Learning [23.25775900388382]
We identify a noticeable negative-positive-coupling (NPC) effect in the widely used cross-entropy (InfoNCE) loss.
By properly addressing the NPC effect, we reach a decoupled contrastive learning (DCL) objective function.
Our approach achieves $66.9%$ ImageNet top-1 accuracy using batch size 256 within 200 epochs pre-training, outperforming its baseline SimCLR by $5.1%$.
arXiv Detail & Related papers (2021-10-13T16:38:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.