論文の概要: An Initial Exploration of Fine-tuning Small Language Models for Smart Contract Reentrancy Vulnerability Detection
- arxiv url: http://arxiv.org/abs/2505.19059v1
- Date: Sun, 25 May 2025 09:28:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:42.874909
- Title: An Initial Exploration of Fine-tuning Small Language Models for Smart Contract Reentrancy Vulnerability Detection
- Title(参考訳): スマートコントラクト残余脆弱性検出のための微調整小言語モデルの初期探索
- Authors: Ignacio Mariano Andreozzi Pofcher, Joshua Ellul,
- Abstract要約: 大規模言語モデル(LLM)は、様々なコーディングタスクにますます使われている。
ニッチ領域の適切な結果を得るために,より小さな言語モデルを微調整できるかどうかを評価する。
- 参考スコア(独自算出の注目度): 1.1049608786515839
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) are being used more and more for various coding tasks, including to help coders identify bugs and are a promising avenue to support coders in various tasks including vulnerability detection -- particularly given the flexibility of such generative AI models and tools. Yet for many tasks it may not be suitable to use LLMs, for which it may be more suitable to use smaller language models that can fit and easily execute and train on a developer's computer. In this paper we explore and evaluate whether smaller language models can be fine-tuned to achieve reasonable results for a niche area: vulnerability detection -- specifically focusing on detecting the reentrancy bug in Solidity smart contracts.
- Abstract(参考訳): 大規模言語モデル(LLM)は、コーダーがバグを特定するのを助けることや、脆弱性検出を含むさまざまなタスクでコーダーをサポートするための有望な方法であるなど、さまざまなコーディングタスクにますます利用されている。
しかし、多くのタスクにおいて、LLMを使うのは適していないかもしれない。そのために、開発者のコンピュータに適合し、容易に実行し、訓練できる小さな言語モデルを使うのがより適しているかもしれない。
本稿では,より小さな言語モデルを微調整して,ニッチな領域で合理的な結果が得られるかどうかを検証し,評価する。
関連論文リスト
- Generative Large Language Model usage in Smart Contract Vulnerability Detection [8.720242549772154]
本稿では,現在のLCMベースのスマートコントラクト脆弱性検出ツールについて,体系的なレビューを行う。
従来の静的および動的解析ツールであるSlitherとMythrilを比較した。
私たちの分析では、それぞれのパフォーマンスが向上する重要な領域を強調し、これらのツールが有望である一方で、テスト用に利用可能なLLMベースのツールは、従来のツールを置き換える準備ができていないことを示しています。
論文 参考訳(メタデータ) (2025-04-07T02:33:40Z) - Leveraging Large Language Models and Machine Learning for Smart Contract Vulnerability Detection [0.0]
我々は、モデル性能を比較するために、機械学習アルゴリズムを訓練、テストし、タイプに応じてスマートコントラクトコードを分類する。
我々の研究は、機械学習と大規模言語モデルを組み合わせて、さまざまなスマートコントラクトの脆弱性を検出するリッチで解釈可能なフレームワークを提供します。
論文 参考訳(メタデータ) (2025-01-04T08:32:53Z) - VulDetectBench: Evaluating the Deep Capability of Vulnerability Detection with Large Language Models [12.465060623389151]
本研究では,Large Language Models(LLM)の脆弱性検出機能を評価するために,新しいベンチマークであるVulDetectBenchを紹介する。
このベンチマークは、LLMの脆弱性を特定し、分類し、発見する能力を、難易度を高める5つのタスクを通じて総合的に評価している。
本ベンチマークでは,脆弱性検出の特定のタスクにおいて,様々なLLMの能力評価を効果的に行うとともに,コードセキュリティの重要領域における今後の研究と改善の基盤となる。
論文 参考訳(メタデータ) (2024-06-11T13:42:57Z) - M2CVD: Enhancing Vulnerability Semantic through Multi-Model Collaboration for Code Vulnerability Detection [52.4455893010468]
大規模言語モデル(LLM)は、コード理解において強力な能力を持つが、微調整コストとセマンティックアライメントの問題により、プロジェクト固有の最適化が制限される。
CodeBERTのようなコードモデルは微調整が容易であるが、複雑なコード言語から脆弱性のセマンティクスを学ぶことはしばしば困難である。
本稿では,M2CVD(Multi-Model Collaborative Vulnerability Detection)手法を提案する。
論文 参考訳(メタデータ) (2024-06-10T00:05:49Z) - An Empirical Study of Automated Vulnerability Localization with Large Language Models [21.84971967029474]
大規模言語モデル(LLM)は、様々な領域において可能性を示しているが、脆弱性のローカライゼーションにおけるその有効性は未解明のままである。
本調査では,ChatGPTや各種オープンソースモデルなど,コード解析に適した10以上のLLMを対象とする。
ゼロショット学習,ワンショット学習,識別的微調整,生成的微調整の4つのパラダイムを用いて,これらのLCMの有効性を検討する。
論文 参考訳(メタデータ) (2024-03-30T08:42:10Z) - To Err is Machine: Vulnerability Detection Challenges LLM Reasoning [8.602355712876815]
脆弱性検出という,困難なコード推論タスクを提示する。
最新のSOTA(State-of-the-art)モデルでは,脆弱性検出評価では54.5%のバランスド精度しか報告されていない。
脆弱性検出を克服するためには、新しいモデル、新しいトレーニング方法、あるいはもっと実行固有の事前トレーニングデータが必要になるかもしれない。
論文 参考訳(メタデータ) (2024-03-25T21:47:36Z) - Detectors for Safe and Reliable LLMs: Implementations, Uses, and Limitations [76.19419888353586]
大規模言語モデル(LLM)は、不誠実なアウトプットからバイアスや有害な世代に至るまで、さまざまなリスクを受けやすい。
我々は,様々な害のラベルを提供するコンパクトで容易に構築できる分類モデルである,検出器のライブラリを作成し,展開する取り組みについて述べる。
論文 参考訳(メタデータ) (2024-03-09T21:07:16Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。