論文の概要: To Err is Machine: Vulnerability Detection Challenges LLM Reasoning
- arxiv url: http://arxiv.org/abs/2403.17218v2
- Date: Tue, 07 Jan 2025 21:57:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:54:28.746641
- Title: To Err is Machine: Vulnerability Detection Challenges LLM Reasoning
- Title(参考訳): To Err is Machine: LLM推論の脆弱性検出
- Authors: Benjamin Steenhoek, Md Mahbubur Rahman, Monoshi Kumar Roy, Mirza Sanjida Alam, Hengbo Tong, Swarna Das, Earl T. Barr, Wei Le,
- Abstract要約: 脆弱性検出という,困難なコード推論タスクを提示する。
最新のSOTA(State-of-the-art)モデルでは,脆弱性検出評価では54.5%のバランスド精度しか報告されていない。
脆弱性検出を克服するためには、新しいモデル、新しいトレーニング方法、あるいはもっと実行固有の事前トレーニングデータが必要になるかもしれない。
- 参考スコア(独自算出の注目度): 8.602355712876815
- License:
- Abstract: In this paper, we present a challenging code reasoning task: vulnerability detection. Large Language Models (LLMs) have shown promising results in natural-language and math reasoning, but state-of-the-art (SOTA) models reported only 54.5% Balanced Accuracy in our vulnerability detection evaluation, even those models pre-trained on large amounts of source code. Our error analysis on LLM responses shows that the models struggle to reason about the code semantics relevant to identifying vulnerabilities, especially subtle semantic differences caused by small textual changes. We explored prominent models and training settings to understand their effects on vulnerability detection performance -- including better prompts, larger models, more pre-training data, and fine-tuning -- but none led to significant improvements. This raises the question of whether simply scaling training data and model size will allow us to "solve" complex code reasoning tasks like vulnerability detection, or if a fundamental shift in modeling and training techniques is required. We also explored adding domain knowledge to prompts; although it helped certain models understand some code semantics, vulnerability detection requires multi-step reasoning, and these models still failed in steps, such as reasoning about variable relations. Our results suggest that new models, new training methods, or more execution-specific pretraining data may be needed to conquer vulnerability detection. We speculate that auto-regressive pre-training on source code may not effectively extract code semantics, especially on the current pretraining mixtures, in which execution data is scarce. Success on vulnerability detection as a code reasoning task can benefit many areas of software engineering such as debugging, test input generation, and program repair. Our code and data are available at https://doi.org/10.6084/m9.figshare.27368025.
- Abstract(参考訳): 本稿では,脆弱性検出という困難なコード推論課題について述べる。
大規模言語モデル(LLM)は、自然言語と数学の推論において有望な結果を示しているが、SOTA(State-of-the-art)モデルは、脆弱性検出評価において54.5%のバランスの取れた精度しか報告していない。
LLM応答のエラー解析は、脆弱性の特定、特に小さなテキストによる変化による微妙なセマンティックな違いに関連するコードのセマンティクスについて、モデルが推論に苦慮していることを示している。
優れたプロンプト、より大きなモデル、事前トレーニングデータ、微調整などを含む、脆弱性検出のパフォーマンスへの影響を理解するために、著名なモデルとトレーニング設定を調査しました。
これは、単にトレーニングデータとモデルサイズをスケールするだけで、脆弱性検出のような複雑なコード推論タスクを"解決"できるのか、モデリングとトレーニングテクニックの根本的なシフトが必要なのか、という疑問を提起する。
特定のモデルはいくつかのコードセマンティクスを理解するのに役立ちましたが、脆弱性検出には複数のステップの推論が必要です。
この結果から,新たなモデル,新たなトレーニング手法,あるいはより実行固有の事前学習データが必要である可能性が示唆された。
ソースコードにおける自動回帰事前学習は、特に実行データが不足している現在の事前学習混合物において、コード意味を効果的に抽出することができないと推測する。
コード推論タスクとしての脆弱性検出の成功は、デバッグ、テストインプット生成、プログラムの修復など、ソフトウェア工学の多くの分野に恩恵をもたらす。
私たちのコードとデータはhttps://doi.org/10.6084/m9.figshare.27368025で公開されています。
関連論文リスト
- What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
モデルの一般化動作は,事前記憶列車の精度と呼ばれるトレーニング指標によって効果的に特徴づけられることがわかった。
モデルの学習行動と一般化を結びつけることで、トレーニング戦略に目標とする改善を導くことができる。
論文 参考訳(メタデータ) (2024-11-12T09:52:40Z) - DFEPT: Data Flow Embedding for Enhancing Pre-Trained Model Based Vulnerability Detection [7.802093464108404]
本稿では,脆弱性検出タスクにおける事前学習モデルの性能向上を目的としたデータフロー埋め込み手法を提案する。
具体的には,関数レベルのソースコードからデータフローグラフを解析し,DFGのノード特性として変数のデータ型を使用する。
我々の研究は、DFEPTが事前訓練されたモデルに効果的な脆弱性セマンティック情報を提供し、Devignデータセットで64.97%、Revealデータセットで47.9%のF1スコアを達成できることを示している。
論文 参考訳(メタデータ) (2024-10-24T07:05:07Z) - A Lean Transformer Model for Dynamic Malware Analysis and Detection [0.0]
マルウェアは現代のコンピューティングの世界にとって急速に成長する脅威であり、既存の防衛線はこの問題に対処するのに十分な効率性を持っていない。
これまでの研究では、実行レポートから抽出したニューラルネットワークとAPI呼び出しシーケンスを活用することに成功した。
本稿では,悪意のあるファイルを検出するために,Transformersアーキテクチャに基づくエミュレーションオンリーモデルを設計する。
論文 参考訳(メタデータ) (2024-08-05T08:46:46Z) - Security Vulnerability Detection with Multitask Self-Instructed Fine-Tuning of Large Language Models [8.167614500821223]
脆弱性検出のためのMSIVD, マルチタスクによる自己指示型微調整を, チェーン・オブ・シント・プロンプトとLDMによる自己指示にインスパイアした。
実験の結果,MSIVDは高い性能を示し,LineVul(LLMベースの脆弱性検出ベースライン)はBigVulデータセットでは0.92点,PreciseBugsデータセットでは0.48点であった。
論文 参考訳(メタデータ) (2024-06-09T19:18:05Z) - DLAP: A Deep Learning Augmented Large Language Model Prompting Framework for Software Vulnerability Detection [12.686480870065827]
本稿では,ディープラーニング(DL)モデルとLLM(Large Language Models)モデルの両方を最大限に組み合わせて,例外的な脆弱性検出性能を実現するフレームワークである textbfDLAP について述べる。
実験の結果、DLAPは、ロールベースのプロンプト、補助情報プロンプト、チェーン・オブ・シントプロンプト、コンテキスト内学習プロンプトなど、最先端のプロンプトフレームワークより優れていることが確認された。
論文 参考訳(メタデータ) (2024-05-02T11:44:52Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
大規模で事前訓練されたモデルは、問題を解決するのに必要なタスク固有のデータの量を劇的に削減するが、多くの場合、ドメイン固有のニュアンスを箱から取り出すのに失敗する。
本稿では,NLPとマルチモーダル学習の最近の進歩を活用して,検索エンジン検索による事前学習モデルを強化する方法について述べる。
論文 参考訳(メタデータ) (2023-11-29T05:33:28Z) - Learning to Quantize Vulnerability Patterns and Match to Locate
Statement-Level Vulnerabilities [19.6975205650411]
さまざまな脆弱性パターンを表す量子化されたベクトルで構成される脆弱性コードブックが学習される。
推論の間、コードブックは、すべての学習パターンにマッチし、潜在的な脆弱性の存在を予測するために反復される。
提案手法は188,000以上のC/C++関数からなる実世界のデータセットに対して広範に評価された。
論文 参考訳(メタデータ) (2023-05-26T04:13:31Z) - AI Model Disgorgement: Methods and Choices [127.54319351058167]
本稿では,現代の機械学習システムに適用可能な分類法を紹介する。
学習モデルにおけるデータ「効果の除去」の意味を,スクラッチからリトレーニングする必要のない方法で検討する。
論文 参考訳(メタデータ) (2023-04-07T08:50:18Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。